Can we find exact value of $x$ satisfying $$x^{x^x}=\sqrt{2}^{\sqrt{2}}$$
My effort:
Let us start with the form $x=2^t$, we have $$\Rightarrow\left(2^t\right)^{2^{t\left(2^t\right)}}=2^{\frac{1}{\sqrt{2}}}$$
$$\Rightarrow \quad 2^{t\left(2^{t\left(2^t\right)}\right)}=2^{\frac{1}{\sqrt{2}}}$$
$$\Rightarrow \quad t \times 2^{t\left(2^t\right)}=\frac{1}{\sqrt{2}}$$ Now again let $t=2^m$, we get $$2^m 2^{2^m\left(2^{2^m}\right)}=2^{\frac{-1}{2}}$$ $$\Rightarrow \quad 2^{m+2^{m+2^m}}=2^{\frac{-1}{2}}$$ Finally we get $$2^{m+2^m}=\frac{-1}{2}-m$$ All that i could figure out now is, by calculus, the right side straight line meets the left curve(which looks similar to $2^x$)meet at one point. By Intermediate Value Theorem, $m \in (-2,-1)$. Help needed here: