How to demonstrate that $\max(Z)$ where $\displaystyle Z=\left\{{100 \choose X}\right\}_{X\in[[0..100]]}$, has X taking the value of 50? Intuitively makes sense but not sure how to prove that? Proving with English is fine.
-
2As $n \choose k$ = $\frac{n!}{k!(n-k)!},$ it's equivalent to showing that $k!(n-k)!$ reaches it's smallest value when $k = \frac{n}2.$ – Alborz Nov 17 '22 at 03:18
3 Answers
Well, consider that:
$$\dfrac{100!}{49!~ 51!}=\dfrac{100!}{50!~ 50!}\dfrac{50}{51}$$
So clearly $\dbinom{100}{49}< \dbinom{100}{50} > \dbinom{100}{51}$
Show $\dbinom{100}{k}<\dbinom{100}{50}$ holds for any $k$ lesser or greater than $50$.

- 129,094
-
can you generalize it? what about for odd numbers 99 instead of 100? – Alexander Mills Nov 17 '22 at 03:31
Generalized version: for n even,
$(\frac{n}2 + 1)(\frac{n}2 - 1)! > (\frac{n}2)(\frac{n}2 - 1)!$
$(\frac{n}2 + 1)!(\frac{n}2 - 1)! > (\frac{n}2)!(\frac{n}2)!$
$\frac{1}{(\frac{n}2 + 1)!(\frac{n}2 - 1)!} < \frac{1}{(\frac{n}2)!(\frac{n}2)!}$
$\frac{n!}{(\frac{n}2 + 1)!(\frac{n}2 - 1)!} < \frac{n!}{(\frac{n}2)!(\frac{n}2)!}$
${n \choose {\frac{n}{2}}} > {n \choose {\frac{n}{2} - 1}}$.
Also, ${n \choose {\frac{n}{2} - 1}} = {n \choose {\frac{n}{2} + 1}}$, gives you the same inequality in the other direction. Then proceed by induction. Or just replace the "-1" in the first line with "-k" for k $\geq$ 1 and prove it that way

- 1,173
- 2
- 13
$$\frac{n\choose k}{n\choose k-1}=\frac{n-k+1}{k}$$
If $k\le n/2$, this is $>1$. And if $k\ge n/2+1$, it's $<1$.
One case is left: if $n$ is odd and $k=\lceil n/2 \rceil$, then $\frac{n-k+1}{k}=1$.

- 23,277