Let $f(x)$ be a real-valued differentiable function on $[0,\infty)$ and $\limsup_{x\to\infty}f(x)=b>\liminf_{x\to\infty} f(x)=a$.
How to prove that there exists a sequence $x_n\to\infty$ such that $\lim_{n\to\infty} f(x_n) = b$ and $\lim_{n\to\infty} f'(x_n) = 0$?
Analysis:
From $\limsup_{x\to\infty} f(x) > \liminf_{x\to\infty} f(x)$ we know that $f(x)$ must have positive oscillation at infinity.
Since $\limsup_{x\to\infty} f(x)=b$, we can choose a sequence $y_n\to\infty$ such that $\lim_{n\to\infty} f(y_n)=b$. But I am not sure about $\lim_{n\to\infty} f'(y_n)$. For some functions like $f(x)=\sin x$, we can take $x_n = \frac{\pi}{2}+2n\pi$ which is exactly what we want.