1

I want to evaluate $$\int_0^{\infty}e^{-x^2} \cos(ax)\,dx$$ and am stuck on one of the last steps. I want to try to apply complex analysis to solve this problem, and saw a similar question + answer here: https://math.stackexchange.com/a/317333/1103382

I took a similar approach, i.e., integrating $e^{-z^2}$ around a complex contour. However, my rectangle was a little different. It had vertices at the complex origin, $R$, $R + ia$, and $ia$.

I first decomposed the integral around the rectangle into the contour integrals around the four component parts, i.e.

$$0 = \int_{rectangle}e^{-z^2} = \int_0^R e^{-x^2}\,dx + \int_{R}^{R+ia} e^{-z^2} \,dz + \int_{R + ia}^{ia} e^{-z^2}\,dz + \int_{ia}^{0} e^{-z^2}\,dz.$$

The first component integral will integrate to $\frac{\sqrt \pi}2$ as $R \to \infty$. The second and fourth integrals evaluate to $0$ as $R \to \infty$ by the ML bound; the only interesting one is $-\int_{ia}^{R + ia} e^{-z^2}\,dz$.

First, I let $z = x + ia$ where $0 \leq x \leq R$ and then rewrite the integral to get $$-\int_0^R \frac{dx}{e^{x^2}e^{i(ax)}e^{-a^2}}.$$

I now use Euler's formula to decompose further but I am left with this integral $\int_0^R e^{-x^2}\sin(ax) \,dx$, and I'm not sure how to evaluate it.

greg115
  • 443

1 Answers1

4

Albeit tedious and possibly unnecessary, you can certainly evaluate $\displaystyle\int_{0}^{\infty}\exp\left(-x^{2}\right)\cos\left(ax\right)dx$ using your rectangular contour on the first quadrant of the complex plane. For $a \in \mathbb{R}$, we will prove using your methods that

$$\int_{0}^{\infty}e^{-x^{2}}\cos\left(ax\right)dx = \frac{\sqrt{\pi}}{2}\exp\left(-\frac{a^{2}}{4}\right).$$

Let the given integral in question be $I$. Then

$$ \eqalign{ I &= \int_{0}^{\infty}e^{-x^{2}}\cos\left(ax\right)dx \cr &= \Re\int_{0}^{\infty}e^{-x^{2}}e^{i\left|a\right|x}dx \cr &= \Re\int_{0}^{\infty}\exp\left(-\left(x-\frac{i\left|a\right|}{2}\right)^{2}-\frac{\left|a\right|^{2}}{4}\right)dx \cr &= \exp\left(-\frac{a^{2}}{4}\right)\Re\int_{0}^{\infty}\exp\left(-\left(x-\frac{i\left|a\right|}{2}\right)^{2}\right)dx \cr &= \exp\left(-\frac{a^{2}}{4}\right)\Re\int_{-i|a|/2}^{\infty-i|a|/2}e^{-x^{2}}dx \cr &= \exp\left(-\frac{a^{2}}{4}\right)\int_{0}^{\infty}e^{-x^{2}}dx. \cr } $$


Let $f(z)=e^{-z^2}$. We shall use your idea of constructing a rectangle:

$$C := \left\{z \in \mathbb{C} : \Re(z) \in [0,R] \text{ } \land \text{ } \Im(z) \in [0,a] \right\},$$

provided $R > a$.

Fortunately, we know $f(z)$ is entire. Using Cauchy's Residue Theorem, we can rewrite $\displaystyle \oint_{C}f(z)dz$ as

$$0 = \int_{0}^{R}f\left(z\right)dz + \int_{R}^{R+ia}f\left(z\right)dz + \int_{R+ia}^{ia}f\left(z\right)dz + \int_{ia}^{0}f\left(z\right)dz$$

$$\implies \int_{0}^{R}f\left(z\right)dz = \int_{R+ia}^{R}f\left(z\right)dz + \int_{ia}^{R+ia}f\left(z\right)dz + \int_{0}^{ia}f\left(z\right)dz.$$

Let the three integrals on the right side of the equality be $I_1$, $I_2$, and $I_3$ (from left to right). We will solve each of them separately as $R \to \infty$.


Let $z=R+iy$. Then bounding $|I_2|$, we get

$$ \eqalign{ \left|\int_{R}^{R+ia}e^{-z^{2}}dz\right| &= \left|\int_{0}^{a}\exp\left(-\left(R+iy\right)^{2}\right)idy\right| \cr &\leq \int_{0}^{a}\left|\exp\left(-\left(R+iy\right)^{2}\right)\right|dy \cr &= \int_{0}^{a}\frac{\exp\left(y^{2}\right)}{\exp\left(R^{2}\right)}dy. \cr } $$ Since $R>a$, we can take $R\to\infty$ so that $\displaystyle \int_{0}^{a}\frac{\exp\left(y^{2}\right)}{\exp\left(R^{2}\right)}dy \to 0$. By the Squeeze Theorem, we can conclude $I_2 \to 0$.


To evaluate $I_4$, we can use the definition of the Error Function to get

$$\int_{0}^{ia}e^{-z^{2}}dz = \frac{i\sqrt{\pi}}{2} \operatorname{erfi}(a).$$


To evaluate $I_3$, let us use your ideas. If $z = x+ia$, then

$$ \eqalign{ \int_{ia}^{R+ia}e^{-z^{2}}dz &= \int_{0}^{R}\exp\left(-\left(x+ia\right)^{2}\right)dx \cr &= e^{a^{2}}\int_{0}^{R}e^{-x^{2}}e^{i\left(-2ax\right)}dx \text{ (Can you see your mistake?)} \cr &= e^{a^{2}}\int_{0}^{R}e^{-x^{2}}\cos\left(2ax\right)dx-ie^{a^{2}}\int_{0}^{R}e^{-x^{2}}\sin\left(2ax\right)dx. \cr } $$


Ending up with $\displaystyle \int_{0}^{\infty}\exp\left(-x^{2}\right)\cos\left(2ax\right)dx$ when we have been trying to evaluate $\displaystyle \int_{0}^{\infty}\exp\left(-x^{2}\right)\cos\left(ax\right)dx$ from the get-go is somewhat circular (for lack of a better term), but I suppose we can use your link you provided to prove $\displaystyle\int_{0}^{\infty}\exp\left(-x^{2}\right)\cos\left(2ax\right)dx = \dfrac{\sqrt{\pi}}{2}e^{-a^{2}}$.


(Answer) We will prove

$$\int_{0}^{\infty}e^{-x^{2}}\sin\left(2ax\right)dx = \frac{\sqrt{\pi}}{2\exp\left(a^{2}\right)} \operatorname{erfi}(a).$$

Proof. Let $I(b) = \int_{0}^{\infty}e^{-x^{2}}\sin\left(bx\right)dx.$ Using the Leibniz Integral Rule, we differentiate with respect to $b$ to get

$$ \eqalign{ I'(b) &= \int_{0}^{\infty}\frac{\partial}{\partial b}e^{-x^{2}}\sin\left(bx\right)dx \cr &= \int_{0}^{\infty}xe^{-x^{2}}\cos\left(bx\right)dx \cr &= \left[-\frac{1}{2}e^{-x^{2}}\cos\left(bx\right)\right]_{0}^{\infty}-\frac{b}{2}\int_{0}^{\infty}e^{-x^{2}}\sin\left(bx\right) \cr I'(b) + \frac{b}{2} I(b) &= \frac{1}{2}\cr e^{b^2/4}\left(I'(b) + \frac{b}{2} I(b)\right)&= \frac{1}{2}e^{b^2/4}\cr \frac{d}{db}\left(e^{b^2/4} I\left(b\right)\right) &= \frac{1}{2}e^{b^2/4} \cr \int \frac{d}{db}\left(e^{b^2/4} I\left(b\right)\right)db &= \int \frac{1}{2}e^{b^2/4}db \cr e^{b^2/4} I(b)&= \int e^{u^2}du\cr &= \frac{\sqrt{\pi}}{2} \operatorname{erfi}\left(\frac{b}{2}\right) + C. } $$

By transitivity, we have

$$I(b) = e^{-b^2/4}\left(\frac{\sqrt{\pi}}{2} \operatorname{erfi}\left(\frac{b}{2}\right) + C\right) = \int_{0}^{\infty}e^{-x^{2}}\sin\left(bx\right)dx.$$

To make $C$ vanish, we let $x=0$. This means

$$I(0) = C = 0.$$

Thus,

$$I(b) = e^{-b^2/4}\frac{\sqrt{\pi}}{2} \operatorname{erfi}\left(\frac{b}{2}\right).$$

Substituting $2a$, we get $I(2a)$ to be

$$\int_{0}^{\infty}e^{-x^{2}}\sin\left(2ax\right)dx = \frac{\sqrt{\pi}}{2\exp\left(a^{2}\right)} \operatorname{erfi}(a).$$

Q.E.D.


Putting everything together, letting $R \to \infty$, and multiplying by $\exp\left(-\frac{a^{2}}{4}\right)$, we get

$$\exp\left(-\frac{a^{2}}{4}\right)\int_{0}^{\infty}e^{-x^{2}}dx = \exp\left(-\frac{a^{2}}{4}\right)\left(0 +e^{a^2}\dfrac{\sqrt{\pi}}{2}e^{-a^{2}} -ie^{a^2}\frac{\sqrt{\pi}}{2\exp\left(a^{2}\right)} \operatorname{erfi}(a) + \frac{i\sqrt{\pi}}{2} \operatorname{erfi}(a) \right).$$

In conclusion, our integral $I$ is

$$\int_{0}^{\infty}e^{-x^{2}}\cos\left(ax\right)dx = \frac{\sqrt{\pi}}{2}\exp\left(-\frac{a^{2}}{4}\right).$$

Please let me know if there are any questions.

Accelerator
  • 4,923