0

If $a,b,c \in \mathbb{N}$ such that $$a^2+b^2=c^2(1+ab)$$ Then prove that $$a \geq c \: \text{and} \:b \geq c$$

My try:

{Case I:Let $a=b$} Then we have $$2a^2=c^2+c^2a^2 \Rightarrow a^2(2-c^2)=c^2 \Rightarrow c^2<2 \Rightarrow c=1$$ $$c=1 \Rightarrow a=b=1 \Rightarrow a=c,b=c$$

{Case II:Let $a \ne b$}:

{SubCase I:If $c=1$} Then we have $$a^2+b^2=1+ab \Rightarrow (a-b)^2=1-ab \Rightarrow ab<1 \Rightarrow a,b \notin \mathbb{N}$$ So this subcase is Rejected.

{SubCase II: $c \geq 2$ and also let $a>b$} We get $$(a-b)^2=c^2+(c^2-2)ab \Rightarrow (a-b)^2-c^2=(c^2-2)ab$$ So since $c^2-2>0$ $$(a-b)^2-c^2 >0 \Rightarrow a-b>c \Rightarrow a>b+c>c \Rightarrow a>c$$

{Subcase III:$c \geq 2$ and also $b>a$} Following the same lines as above, we get $b>c$.

Now how can I prove both $a>c,b>c$ holds simultaneously?

Ekaveera Gouribhatla
  • 13,026
  • 3
  • 34
  • 70

0 Answers0