Let
- $X$ be a metric space,
- $\mathcal C_b(X)$ the space of real-valued bounded continuous functions on $X$,
- $\mathcal C_c(X)$ the space of real-valued continuous functions on $X$ with compact supports,
- $\mathcal M (X)$ the space of all complex Borel measures on $X$,
- $\mathcal M_{\mathbb R}(X)$ the space of all finite signed Borel measures on $X$, and
- $\mathcal M_+ (X)$ the space of all finite non-negative Borel measures on $X$.
For $\nu \in \mathcal M(X)$, let $|\nu| \in \mathcal M_+ (X)$ be its variation and $[\nu] := |\nu| (X)$ its total variation norm. Then $(\mathcal M(X), [\cdot])$ is a real Banach space. For $\mu_n,\mu \in \mathcal M(X)$, we define weak convergence by $$ \mu_n \rightharpoonup \mu \overset{\text{def}}{\iff} \int_X f \mathrm d \mu_n \to \int_X f \mathrm d \mu \quad \forall f \in \mathcal C_b(X), $$ and weak$^*$ convergence by $$ \mu_n \overset{*}{\rightharpoonup} \mu \overset{\text{def}}{\iff} \int_X f \mathrm d \mu_n \to \int_X f \mathrm d \mu \quad \forall f \in \mathcal C_c (X). $$
It has been shown that
Theorem Let $\mu_n,\mu\in \mathcal{M}(X)$ such that $\mu_n \rightharpoonup \mu$. Then for any open subset $O$ of $X$, $$ |\mu|(O) \leq \liminf _{n \rightarrow \infty}\left|\mu_n\right|(O) . $$
I would like to apply the same technique to prove that
Theorem Let $X$ be locally compact separable and $\mu_n,\mu\in \mathcal{M}(X)$ such that $\mu_n \overset{*}{\rightharpoonup} \mu$. Then for any open subset $O$ of $X$, $$ |\mu|(O) \leq \liminf _{n \rightarrow \infty}\left|\mu_n\right|(O) . $$
My proof seems to be much simpler than the original one. It's likely that I made some subtle mistakes. Could you please have a check on my attempt?
Proof: We need the following lemmas, i.e.,
Lemma 1 Let $X$ be a locally compact separable metric space. Then $X$ is a Radon space.
Lemma 2 Let $X$ be a locally compact Hausdorff space. Let $K$ be a compact subset of $X$ and $U$ an open subset of $X$ such that $K \subset U$. Then there is an open subset $V$ of $X$ such that $K \subset V \subset \overline V \subset U$ and $\overline V$ is compact.
Let $\mathcal X$ be the Borel $\sigma$-algebra of $X$. By polar decomposition, there is a measurable $g:X \to [0, 2\pi)$ such that $$ |\mu| (B) = \int_B e^{i g} \mathrm d \mu \quad \forall B \in \mathcal X. $$
Fix $\varepsilon>0$. By Lemma 1, there is a compact subset $K$ of $O$ such that $|\mu| (O \setminus K) < \varepsilon$. By Lemma 2, there is an open subset $V$ of $X$ such that $\overline V$ is compact and $K \subset V \subset \overline V \subset O$. By Urysohn's lemma, there is a continuous $h:X \to [0, 1]$ such that $f(K)=1$ and $f(X \setminus V) = 0$. This implies the support of $f$ is contained in $\overline V$, so $f \in \mathcal C_c (X)$. Also, $|f| \le 1_{O}$. We have $$ \begin{align} |\mu| (O) - \operatorname{Re} \int_O fe^{i g} \mathrm d \mu &= \operatorname{Re} \int_O (1-f)e^{i g} \mathrm d \mu \\ &\le \left | \int_O (1-f)e^{i g} \mathrm d \mu \right | \\ &\le \int_O |(1-f)e^{i g}| \mathrm d |\mu| \\ &= \int_O |1-f| \mathrm d |\mu| \\ &\le |\mu| (O \setminus K) < \varepsilon. \end{align} $$
So $$ \begin{align} |\mu| (O) - \varepsilon &< \operatorname{Re} \int_O fe^{i g} \mathrm d \mu \\ &\overset{(1)}{=} \operatorname{Re} \lim_n \int_O fe^{i g} \mathrm d \mu_n \\ &= \lim_n \operatorname{Re} \int_O fe^{i g} \mathrm d \mu_n \\ &\le \liminf_n \left| \int_O fe^{i g} \mathrm d \mu_n \right| \\ &\le \liminf_n \int_O |fe^{i g}| \mathrm d |\mu_n | \\ &= \liminf_n \int_O |f| \mathrm d |\mu_n | \\ &\le \liminf_n \int_O \mathrm d |\mu_n | \\ &= \liminf_n |\mu_n| (O). \end{align} $$
Notice that $(1)$ is true even if $fe^{i g}$ is complex-valued. The claim then follows by taking the limit $\varepsilon \to 0^+$.