Here is a proof that contains no numbers with more than five decimal digits.
\begin{gather*}
10 = \frac{65536}{6561}\times\frac{65610}{65536} =
\left(\frac43\right)^8\!\!\times\frac{65573 + 37}{65573 - 37} \\
\therefore\ \ln10 = 8\ln\left(\frac{1 + 1/7}{1 - 1/7}\right) +
\ln\left(\frac{1 + 37/65573}{1 - 37/65573}\right) \\
< 16\left(\frac17 + \frac{(1/7)^3}{3(1 - (1/7)^2)}\right) +
2\left(y + \frac{y^3}{3(1 - y^2)}\right),
\end{gather*}
where $y = 37/65573.$
We have
$$
16\left(\frac17 + \frac{(1/7)^3}{3(1 - (1/7)^2)}\right) =
\frac{16}7 + \frac1{3\cdot3\cdot7} = \frac{145}{63},
$$
and $y < 1/1000,$ therefore $1 - y^2 > 2/3,$ therefore
$$
2\left(y + \frac{y^3}{3(1 - y^2)}\right) < 2y + y^3 < 2y + 10^{-9}.
$$
Therefore:
$$
\ln10 < \frac{145}{63} + 2y + 10^{-9}.
$$
On the other hand, from e Continued Fraction - from Wolfram MathWorld, we have:
$$
e > \frac{106}{39},
$$
and from Square root of 2 - Wikipedia, or by simple
calculation:
$$
2 < \frac{9801}{4900} = \left(\frac{100 - 1}{70}\right)^2,
\quad \therefore\ \sqrt2 < \frac{99}{70}.
$$
Putting all the inequalities together, we get:
\begin{align*}
e - \sqrt2 + 1 - \ln10 & > \frac{106}{3\cdot13} -
\frac{29}{7\cdot10} - \frac{145}{7\cdot9} - 2y - 10^{-9} \\
& = \frac{106\cdot210 - 29\cdot117 - 145\cdot130}
{7\cdot9\cdot10\cdot13} - 2y - 10^{-9} \\
& = \frac{17}{8190} - \frac{74}{65573} - 10^{-9} \\
& > \frac{16}{8192} - \frac{74}{65536} - 10^{-9} \\
& = \frac{16}{8192} - \frac{128}{65536} + \frac{54}{65536} - 10^{-9}
\\ & = \frac1{512} - \frac1{512} + \frac{27}{32768} - 10^{-9} \\
& > 0.
\end{align*}