My question is how to calculate
$$ \int_{\mathbb{R}^n} f(x) \delta(h(\mathbf{x})) \delta(g(\mathbf{x})) \mathrm{d} \mathbf{x} $$
(In my case both $h(\mathbf{x})$ and $g(\mathbf{x})$ are linear function, it would be nice to have a more general solution)
I learn from Wikipedia that $$ \int_{\mathbb{R}^n} f(\mathbf{x}) \delta(g(\mathbf{x})) \mathrm{d} \mathbf{x}=\int_{g^{-1}(0)} \frac{f(\mathbf{x})}{|\nabla g|} \mathrm{d} \sigma(\mathbf{x}) $$
So I think $$ \int_{\mathbb{R}^n} f(x) \delta(h(\mathbf{x})) \delta(g(\mathbf{x})) \mathrm{d} \mathbf{x} = \int_{g^{-1}(0)} \frac{f(\mathbf{x})\delta(h(\mathbf{x}))}{|\nabla g|} \mathrm{d} \sigma(\mathbf{x}) $$
But I don't know what should I do in next step, if I reapet the same method I get
$$ \int_{g^{-1}(0)} \frac{f(\mathbf{x})\delta(h(\mathbf{x}))}{|\nabla g|} \mathrm{d} \sigma(\mathbf{x}) = \int_{g^{-1}(0), h^{-1}(0)} \frac{f(\mathbf{x})}{|\nabla g||\nabla h|} \mathrm{d} s(\mathbf{x}) $$
If it is correct, I don't know if $\nabla h$ is calculated in original $\mathbb{R}^n$ space or $g^{-1}(0)$ space?