Rather than considering a sum of an odd number ($2n\pm1$) of terms, put the odd number in the argument to $\sin$ and take a sum of $n$ terms. For $n\in\Bbb N\cup\{0\}$,
$$\begin{align*}
S &= \sin(\alpha) + \sin(3\alpha) + \sin(5\alpha) + \cdots + \sin((2n+1)\alpha) \\[1ex]
&= \Im e^{i\alpha} + \Im e^{i3\alpha} + \Im e^{i5\alpha} + \cdots + \Im e^{i(2n+1)\alpha} \tag{1} \\[1ex]
&= \Im e^{i\alpha} \sum_{k=0}^n \left(e^{i2\alpha}\right)^k \\[1ex]
&= \Im e^{i\alpha} \frac{1 - \left(e^{i2\alpha}\right)^{n+1}}{1 - e^{i2\alpha}} \tag{2} \\[1ex]
&= \Im \frac{i - i\cos((2n+2)\alpha) - i^2\sin((2n+2)\alpha)}{2\sin(\alpha)} \tag{3} \\[1ex]
&= \frac{1 - \cos((2n+2)\alpha)}{2\sin(\alpha)}
\end{align*}$$
- $(1)$ : $\Im e^{ix} = \sin(x)$
- $(2)$ : $|r|<1 \implies \sum\limits_{k=0}^n r^k = \frac{1-r^{n+1}}{1-r}$ (geometric series)
- $(3)$ : $\left(e^{ix}\right)^n = e^{inx}$ (de Moivre)