Let $V$ be a vector space over $\mathbb{C}$. Clifford algebra $Cl(V,Q)$ is defined by the tensor algebra $T^{\boldsymbol{^*}}(V)$ modulo the ideal $I$ generated by $v\otimes v -Q(v,v)\cdot1$.
Let $Cl^{\times}(V,Q)=\{\varphi\in Cl(V,Q): \exists \varphi^{-1} , \varphi\varphi^{-1}=\varphi^{-1}\varphi=1 \}$ be the multiplicative group of units. It is a Lie group by identifying $Cl^{\times}(V,Q)\cong GL(Cl(V,Q))$.(here it is not correct, see (Group of units of a Clifford algebra)
Define the Conjugation of Clifford algebra. \begin{align*} *:v_1\cdot\ldots \cdot v_r\mapsto(-1)^r v_r\cdot\ldots\cdot v_1 \end{align*} Then Spin group is defined by \begin{align*} \text{Spin}(Q)=\{x\in Cl^0: x\cdot x^*=1, x\cdot v\cdot x^*\in V\} \end{align*}
If the multiplication and conjugation are continuous, then $\text{Spin}(Q)$ is closed in $Cl^{\times}(V,Q)$.
Is this correct? If so, why the multiplication and conjugation are continuous?