Let $\mathcal{E}$ be the set containing even subsets of $X$ and $\mathcal{O}$ be the one containing odd ones.
Let $S \in \mathcal{E}$ or $S \in \mathcal{O}$
Let there exists $a \in X$ and define a function :
$$f_a : \mathcal{E} \rightarrow \mathcal{O}$$
To be :
$$f(Y) = Y \triangle \{a\}$$
Then :
$$\forall S : (f_a(f_a(S))) = S $$
$$\implies f^{-1}_a = f_a $$
Hence $f_a$ is a bijection
$$\implies \mathcal{|E|} = \mathcal{|O|} \:\square$$
$---------------------$
Is the proof correct?
$---------------------$
P.S There are different answers to this question(mostly combinatorial) few of them I am listing below :
How to prove the cardinality of set of even and odd integers are equal?