We begin with Euclid's formula for generating Pythagorean triples, shown here as
$$A=m^2-k^2 \qquad B=2mk \qquad C=m^2+k^2$$
The $\,mk\,$ values for a series of triples where $\,|B-A|=1\,$ are contiguous Pell numbers, i.e.
$\,\big\{1,2,5,12,29,70,169,\cdots\big\}$ and may be generated by the following funcions:
$$ m_n= \frac{(1 + \sqrt{2})^{n+1} - (1 - \sqrt{2})^{n+1}}{2\sqrt{2}}\qquad
k_n= \frac{(1 + \sqrt{2})^n - (1 - \sqrt{2})^n}{2\sqrt{2}}$$
For example
\begin{align*}
m_1&= \frac{(1 + \sqrt{2})^{2} - (1 - \sqrt{2})^{2}}{2\sqrt{2}}=2
& k_1= \frac{(1 + \sqrt{2})^1 - (1 - \sqrt{2})^1}{2\sqrt{2}}=1\\
m_2&= \frac{(1 + \sqrt{2})^{3} - (1 - \sqrt{2})^{3}}{2\sqrt{2}}=5
& k_2= \frac{(1 + \sqrt{2})^2 - (1 - \sqrt{2})^2}{2\sqrt{2}}=2\\
m_3&= \frac{(1 + \sqrt{2})^{4} - (1 - \sqrt{2})^{4}}{2\sqrt{2}}=12
& k_3= \frac{(1 + \sqrt{2})^3 - (1 - \sqrt{2})^3}{2\sqrt{2}}=5\\
m_4&= \frac{(1 + \sqrt{2})^{5} - (1 - \sqrt{2})^{5}}{2\sqrt{2}}=29
&k_4= \frac{(1 + \sqrt{2})^4 - (1 - \sqrt{2})^4}{2\sqrt{2}}=12\\
\end{align*}
The values grow quickly and exceed $\,15\,$ digits when
$\,n>19.\quad$ Here is a series sample
\begin{align*}
F(2,1)&=(3,4,5)\\
F(5,2)&=(21,20,29)\\
F(12,5)&=(119,120,169)\\
F(29,12)&=(697,696,985)\\
F(70,29)&=(4059,4060,5741)\\
F(169,70)&=(23661,23660,33461)\\
F(408,169)&=(137903,137904,195025)\\
F(985,408)&=(803761,803760,1136689)\\
\end{align*}
With $\,n\,$ sufficiently high, we can generate a Pythagorean triple where $C/A\text{ and }C/B\,$ are both arbitrarily close to $\,\sqrt{2}.$