Is there a simple relation for $\sum_{k=0}^{n-1}\tan^4\left({k\pi\over n}\right)$ like there is for $\sum_{k=0}^{n-1}\tan^2\left({k\pi\over n}\right)$?
Looking at Jolley, Summation of Series, formula 445: $\sum_{k=0}^{n-1}\tan^2\left(\theta+{k\pi\over n}\right)=n^2\cot^2\left({n\pi\over2}+n\theta\right)+n(n-1)$
or more simply:
$\sum_{k=0}^{n-1}\tan^2\left({k\pi\over n}\right)=n(n-1)$
Does $\sum_{k=0}^{n-1}\tan^4\left({k\pi\over n}\right)$ possibly equals some integer values?
The numerical table seems to suggest so even for higher even powers of $\tan$:
$\left( \begin{array}{ccccc} n & \sum_{k=0}^{n-1}\tan^2\left({k\pi\over n}\right)&\sum_{k=0}^{n-1}\tan^4\left({k\pi\over n}\right)&\sum_{k=0}^{n-1}\tan^6\left({k\pi\over n}\right)&\sum_{k=0}^{n-1}\tan^8\left({k\pi\over n}\right)\\ 3. & 6. & 18. & 54. & 162. \\ 5. & 20. & 180. & 1700. & 16100. \\ 7. & 42. & 742. & 14154. & 271558. \\ 9. & 72. & 2088. & 66600. & 2.14049\times 10^6 \\ 11. & 110. & 4730. & 226622. & 1.09528\times 10^7 \\ 13. & 156. & 9308. & 624780. & 4.2335\times 10^7 \\ 15. & 210. & 16590. & 1.48533\times 10^6 & 1.34314\times 10^8 \\ \end{array} \right)$
I had tried to use residue methods and I particularly like falager's method in this answer using Vieta's formula but kept getting stuck.
If one could make progress with the quartic, one could possibly find for higher even powers of tan too.
The point is that after splitting to even and odd cases, the answer given in your link must be able to work this problem out. Remember: $$\sum x_i^2 = (\sum x_i)^2-2\sum\limits_{i\neq j} x_ix_j$$
– dezdichado Nov 06 '22 at 21:53