I need to prove that
\begin{equation} I_n=\displaystyle\int_{-1}^{1} \ln T_n^2(x) \frac{dx}{\sqrt{1-x^2}} = -2\pi\ln2 \end{equation} where $\ln$ denotes the natural logarithm and $T_n(x)$ are the Chebyshev polynomials of the first kind defined by $T_n(x) = cos(n\hspace{0.1cm}cos^{-1}(x))$. Performing the change of variable $x = \cos\theta$ one can easily obtain
\begin{equation} I_n=\displaystyle\int_{0}^{\pi} \ln \left\|\cos(n\theta)\right\|^2 d\theta \end{equation} using that $\cos x = \frac{e^{ix}+e^{-ix}}{2}$ I can write
\begin{equation} I_n=\displaystyle\int_{0}^{\pi} \ln \cos^2(n\theta) d\theta = \frac{1}{2}\displaystyle\int_{0}^{2\pi} \ln \left\|\frac{e^{in\theta}+e^{-in\theta}}{2}\right\|^2 d\theta = \frac{1}{2}\displaystyle\int_{0}^{2\pi} \ln \left\|\frac{e^{2in\theta}+1}{2}\right\|^2 d\theta \end{equation} Now I use the mean value property for holomorphic functions which establishes that if $f$ is analytic in a region $D$ and $a\in D$, then $f(a)$ equals the integral around any circle centered at $a$ divided by $2π$ \begin{equation} f(a) = \frac{1}{2\pi}\displaystyle\int_{0}^{2\pi}f(a+re^{i\theta})d\theta \end{equation}
In my case $f(a+re^{i\theta}) = \ln \left\|\frac{e^{2in\theta}+1}{2}\right\|^2$ so $a=r=1/2$. Then, the integral is
\begin{equation} \displaystyle\int_{0}^{2\pi} \ln \left\|\frac{e^{2in\theta}+1}{2}\right\|^2 d\theta = 2\pi f(a) = 2\pi \ln\left\|\frac{1}{2}\right|^2 = -2\pi\ln{4} = -4\pi \ln 2 \end{equation} and then \begin{equation} I_n=\displaystyle\int_{0}^{\pi} \ln \left\|\cos(n\theta)\right\|^2 d\theta = \frac{1}{2} \displaystyle\int_{0}^{2\pi} \ln \left\|\frac{e^{2in\theta}+1}{2}\right\|^2 d\theta = -2\pi\ln2 \end{equation} which is the desired result. I'm not sure if my procedure is correct because I'm working on a circle of radius $1/2$ centered at $1/2$ so my frontier contains the point $0$ for what the logarithm has an essential singularity. I'm not sure how to deal with that aspect. To what extent do I need to worry about what happens at the frontier?