I need to compute
$I(\omega)=\int_{-\infty}^{+\infty}dte^{-i\omega t}|t|^{-\frac{4}{3}}\tag{1}$
for $\omega\geq0$. It is clear that the integral diverges around $t=0$, yet I was hoping to find out if it is possible to understand it in terms of some distribution (similarly to the case $\delta(\omega)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}dte^{-i\omega t}$). I found some results for the Fourier transform of $|t|^\alpha$ when $\alpha\geq-1$, but this is not the case here.
I have also a question related. I tried to compute $I(\omega)$ by doing: $I(\omega)=\int_{-\infty}^{+\infty}dte^{-i\omega t}|t|^{-\frac{4}{3}}=\int_{0}^{\infty}dte^{i\omega t}|-t|^{-\frac{4}{3}}+\int_{0}^{\infty}dte^{-i\omega t}|t|^{-\frac{4}{3}}=2\int_{0}^{\infty}dt\cos(\omega t)t^{-\frac{4}{3}}\tag{2}$
Then using Mathematica I computed
$\frac{dI(\omega)}{d\omega}=-2\int_{0}^{\infty}dt\sin(\omega t)t^{-\frac{1}{3}}=-2\frac{\pi\,\textrm{sign}(\omega)}{\Gamma(\frac{1}{3})|\omega|^{2/3}}\tag{3}$
Then for $\omega\geq0$ one has:
$\frac{dI(\omega)}{d\omega}=-2\frac{\pi}{\Gamma(\frac{1}{3})\omega^{2/3}}\tag{4}$
which implies
$I(\omega)=-\frac{6\pi}{\Gamma(\frac{1}{3})}\omega^{1/3}\tag{5}$.
Last equation does not seems to make sense, since implies $I(\omega=0)=0$, while for $\omega=0$ the integral $I(\omega)$ should diverge. What is the mistake in the steps above?
Thanks in advance for the help!