3

I need to compute

$I(\omega)=\int_{-\infty}^{+\infty}dte^{-i\omega t}|t|^{-\frac{4}{3}}\tag{1}$

for $\omega\geq0$. It is clear that the integral diverges around $t=0$, yet I was hoping to find out if it is possible to understand it in terms of some distribution (similarly to the case $\delta(\omega)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}dte^{-i\omega t}$). I found some results for the Fourier transform of $|t|^\alpha$ when $\alpha\geq-1$, but this is not the case here.

I have also a question related. I tried to compute $I(\omega)$ by doing: $I(\omega)=\int_{-\infty}^{+\infty}dte^{-i\omega t}|t|^{-\frac{4}{3}}=\int_{0}^{\infty}dte^{i\omega t}|-t|^{-\frac{4}{3}}+\int_{0}^{\infty}dte^{-i\omega t}|t|^{-\frac{4}{3}}=2\int_{0}^{\infty}dt\cos(\omega t)t^{-\frac{4}{3}}\tag{2}$

Then using Mathematica I computed

$\frac{dI(\omega)}{d\omega}=-2\int_{0}^{\infty}dt\sin(\omega t)t^{-\frac{1}{3}}=-2\frac{\pi\,\textrm{sign}(\omega)}{\Gamma(\frac{1}{3})|\omega|^{2/3}}\tag{3}$

Then for $\omega\geq0$ one has:

$\frac{dI(\omega)}{d\omega}=-2\frac{\pi}{\Gamma(\frac{1}{3})\omega^{2/3}}\tag{4}$

which implies

$I(\omega)=-\frac{6\pi}{\Gamma(\frac{1}{3})}\omega^{1/3}\tag{5}$.

Last equation does not seems to make sense, since implies $I(\omega=0)=0$, while for $\omega=0$ the integral $I(\omega)$ should diverge. What is the mistake in the steps above?

Thanks in advance for the help!

Sandro
  • 31
  • Yes there is a distribution. See THIS – Mark Viola Nov 04 '22 at 16:47
  • The derivative of the distribution $f=|t|^{-1/3} sign(t)\in L^1_{loc}$ is a distribution, it agrees with $-1/3 |t|^{-4/3}$ away from $0$. The Fourier transform of $f$ is $(i\omega)^{-2/3} \Gamma(2/3)+(-i\omega)^{-2/3} \Gamma(2/3)$ thanks to a bit of complex analyis. Multiply with $i\omega$ to get the Fourier transform of $f'$. – reuns Nov 04 '22 at 19:41
  • @reuns In fact, as I showed in This Answer, the Fourier transform of $|t|^{\alpha}$, $\alpha<-1$ is given by the distribution $$2\sin(\pi |\alpha /2) \Gamma(1-|\alpha|)|\omega|^{|\alpha|-1}$$ – Mark Viola Nov 04 '22 at 21:53
  • Reuns and Mark Viola, thanks a lot to both! I have however a question about this result: if I look at the definition of $I(\omega)$ it is clear that for $\omega=0$ the integral diverges. In your result instead it goes to 0. How is this possible? Are we, implicitly, doing something like a PV? Mark I tried to understand the point from the link you put (very great page!) but I could not follow all, which is why I am asking here – Sandro Nov 04 '22 at 22:29
  • @Sandro You're welcome. My pleasure. Your expression in $(1)$ is not an integral. Rather it is a distribution and does not have a meaning at a specific point. I've posted a solution. – Mark Viola Nov 05 '22 at 19:29
  • @Sandro Please let me know how I can improve my answer. I really want to give you the best answer I can – Mark Viola Dec 04 '22 at 16:45

1 Answers1

2

Let us define the distribution $\psi(t)=\left(|t|^{-4/3}\right)$ as

$$\langle \psi,\phi\rangle=\int_{-\infty}^\infty \frac{\phi(t)-\phi(0)}{|t|^{4/3}}\,dt$$

for $\phi\in \mathbb{S}$. Then, we see that

$$\begin{align} \langle \mathscr{F}\{\psi\},\phi\rangle &=\langle \psi,\mathscr{F}\{\phi\}\rangle\\\\ &=\int_{-\infty}^\infty \frac1{|t|^{4/3}}\int_{-\infty}^\infty \phi(\omega)(e^{i\omega t}-1)\,d\omega\,dt\\\\ &=2\int_{-\infty}^\infty \phi(\omega)\int_0^\infty \frac{\cos(\omega t)-1}{t^{4/3}}\,dt\,d\omega\\\\ &=2\int_{-\infty}^\infty \phi(\omega) |\omega|^{1/3}\underbrace{\int_0^\infty \frac{\cos(t)-1}{t^{4/3}}\,dt}_{=\sin(2\pi/3)\Gamma(-1/3)}\,d\omega \end{align}$$

Therefore, we find that the Fourier transform of the distribution $\psi$ is

$$\mathscr{F}\{\psi\}(\omega)=2\sin(2\pi/3)\Gamma(-1/3)|\omega|^{1/3}$$

where $f(\omega)=|\omega|^{1/3}$ is locally integrable and has inverse Fourier transform.



Here, we show that the inverse Fourier Transform of $|\omega|^{1/3}$ is given by the distribution $\frac{1}{2\sin(2\pi/3)\Gamma(-1/3)}\psi(t)=\frac{1}{2\sin(2\pi/3)}\left(|t|^{-4/3}\right)$. To that end, we now proceed.

Let $f(\omega)=|\omega|^{1/3}$. Then, for any $\phi\in \mathbb{S}$ we have

$$\begin{align} \langle \mathscr{F}^{-1}\{f\},\phi \rangle &=\langle f,\mathscr{F}^{-1}\{\phi\} \rangle\\\\ &=\frac1\pi\text{Re}\int_0^\infty \omega^{1/3} \int_{-\infty}^\infty \phi(t) e^{-i\omega t}\,dt\,d\omega\tag1 \end{align}$$

Integrating by parts the inner integral in $(1)$ reveals

$$$$\begin{align} \langle \mathscr{F}\{f\},\phi \rangle &=\frac1\pi\text{Re}\left(-i \int_0^\infty \omega^{-2/3}\int_{-\infty}^\infty \phi'(t) e^{-i\omega t}\,dt\,d\omega\right)\\\\ &=\frac1\pi\text{Im}\left(\int_{-\infty}^\infty \phi'(t) \underbrace{\int_0^\infty \omega^{-2/3}e^{-i\omega t}\,d\omega}_{=e^{-i\text{sgn}(t)\pi/6}\frac{\Gamma(1/3)}{|t|^{1/3}}}\,dt\right)\\\\ &=-\frac{\Gamma(1/3)}{2\pi}\int_{-\infty}^\infty \frac{\phi'(t)}{|t|^{1/3}}\text{sgn}(t)\,dt\\\\ &=-\frac{\Gamma(4/3)}{2\pi}\int_{-\infty}^\infty \frac{\phi(t)-\phi(0)}{|t|^{4/3}}\,dt\\\\ &=\frac{1}{2\sin(2\pi/3)\Gamma(-1/3)}\int_{-\infty}^\infty \frac{\phi(t)-\phi(0)}{|t|^{4/3}}\,dt \end{align}$$ $$

as expected!

Mark Viola
  • 179,405