$
\newcommand\R{\mathbb R}
$
A multilinear function $V^{\times k} \to \R$ is characterized by the tensor power $V^{\otimes k} \to \R$, or put another way $(V^{\otimes k})^*$; the universal property of such a tensor power says that any multilinear function $f : V^{\times k} \to W$ for vector spaces $V, W$ extends uniquely to a linear map $f' : V^{\otimes k} \to W$ such that
$$
f'(v_1\otimes v_2\otimes\cdots\otimes v_k) = f(v_1, v_2, \dotsc, v_k).
$$
Note that this also means there is a one-to-one correspondence between multilinear functions and linear functions on $V^{\otimes k}$. So what we want to do is find $V^{\otimes 0}$, i.e. some vector space that satisfies an analogous universal property. The answer is $V^{\otimes 0} = \R$, for observe: every map (linear or not) $f : \{0\} \to W$ (which is just a choice of $f(0) \in W$) extends uniquely to a linear map $f' : \R \to W$ such that $f'(1) = f(0)$.
Thus the "multilinear maps of degree zero" are more properly elements of $(V^{\otimes0})^*$, which are linear maps $f : \R \to \R$, which amount to a choice of $x \in \R$ so that $f(y) = xy$.