Using the observation that $\frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1}$, and taking $D$ to be the derivative operator over the vector space $P_n(\mathbb{R})$ of polynomials in $\mathbb{R}$ of order less than or equal to $n$, using the canonical basis $\beta = \{x^0, x^1, x^2, \dots, x^n\}$, we can see that $D$ can be expressed as a $(n+1) \times (n+1)$ matrix
$$D = \begin{bmatrix}d_{00} & d_{01} &\cdots & d_{0n}\\
d_{10} &d_{11} & \cdots &d_{1n}\\
\vdots & \vdots & \ddots & \vdots\\
d_{n0} & d_{n1} & \cdots &d_{nn} \end{bmatrix}$$
Where
$$d_{ij} = j\delta_{i(j-1)}$$
Where $\delta_{ij}$ is the Kronecker delta. This formula comes directly from $\frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1}$. Can you see how?
This gives us the matrix
$$D = \begin{bmatrix}0 & 1 &0 &0 &\cdots & 0\\
0 &0 &2 &0 &\cdots &0\\
0 &0 &0 &3 &\cdots &0\\
\vdots & \vdots &\vdots &\vdots &\ddots & \vdots\\
0 & 0& 0 &0 &\cdots &n\\
0 &0 &0 &0 &\cdots &0 \end{bmatrix}$$
Which, applied to any polynomial, is indeed the derivative operator.
This can be generalized to an infinite-dimensional operator $D$ over $\mathbb{R}[x]$, the vector space of all formal power series in $x$ with coefficients in $\mathbb{R}$.