I have the following problem:
Prove $\displaystyle\lim_{x\to\infty}\frac{\sin{(1/x})}{1/x}=1$ without L'Hospital's rule.
I tried to use the sandwiches theorem but it didn't work.
My attempt:
$$-1\leq\sin\left(\frac{1}{x}\right)\leq1$$
$$-x\leq\frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x}}\leq x$$
$$\lim_{x\to\infty}{-x}=-\infty$$
$$\lim_{x\to\infty}{x}=\infty$$
$$-\infty\leq\lim_{x\to\infty}\frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x}}\leq \infty$$
That's where I got stuck.
Thank you very much for your precious time!