Find the smallest positive integer $n$ such that $ n[5]= [0]$ in the groups $i.$$\mathbb {Z}_{15}$ , $ii.$$\mathbb {Z}_{20}$.
My solution goes like this:
If $n=3$ then $3[5]=[15]=[0]$, is true as $a\in [5]$ if $a\equiv 5\pmod{15}$ and hence $3a\equiv 15\equiv 0\pmod{15}$. So, if $a\in [5]$, then $3a\in [15]=[0]$, so $3.[5]=[0]$ and $n=3$. Similarly, for $\mathbb {Z}_{20}$ , $n=4$.
Is the above solution valid? Does the above proof holds true? If not, then where is the problem occurring?...