I am trying to compute:
$|Aut(\mathbb{Z}_6 \times \mathbb{Z}_{10} \times \mathbb{Z}_{15})|$
I know that:
If $H$ and $K$ have coprime orders then:
$Aut(K \times H) \cong Aut(K)\times Aut(H) $
For prime $p$:
$ GL(\mathbb{Z}_p \times \mathbb{Z}_p) = Aut(\mathbb{Z}_p \times \mathbb{Z}_p) $
I thought of doing something like:
$|Aut(\mathbb{Z}_6 \times \mathbb{Z}_{10} \times \mathbb{Z}_{15})|=|Aut(\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{5}\times \mathbb{Z}_{2}\times \mathbb{Z}_{5}\times \mathbb{Z}_{3})|=|Aut(\mathbb{Z}_2^2 \times \mathbb{Z}_3^2 \times \mathbb{Z}_{5}^2)|$
(but why can I swap the order in the last transition?) (Q1)
and then:
$=|Aut(\mathbb{Z}_2^2)|\cdot |Aut(\mathbb{Z}_3^2)| \cdot |Aut(\mathbb{Z}_{5}^2)| $
(but why does this hold? Fact no. 1 is only for two groups and of coprime order...) (Q2)
and from here I want to use fact no. 2 somehow, but I'm not sure how to compute $ |GL(\mathbb{Z}_p \times \mathbb{Z}_p)| $ (Q3)
Any assistance with my questions would be greatly appreciated.