Denote the linear space of linear operators on the linear space $V$ with field $\mathbb{F}$ by $L(V)$ and the linear space of $n \times n$ matrices with entries in $\mathbb{R}$ by $\mathbb{R}^{n\times n}$. Let $T:V \to V$ be an operator on the linear space $V$ over $\mathbb{R}$. Let $C_T(x)=\det(x I - T)$ be its characteristic polynomial. The coefficients of $C_T$ are in $\mathbb{R}$ since by definition $C_T(x)=\det\left(\mathcal{M}_B^B(xI-T)\right)$ and all the entries of $\mathcal{M}_B^B(xI-T)$ are in $\mathbb{R}$, where $\mathcal{M}_B^B$ is a linear isomorphism between $L(V)$ and $\mathbb{R}^{n \times n}$ with $B$ being a basis for $V$. Consequently, if $\lambda \in \mathbb{C} - \mathbb{R}$ is a root of $C_T$ then $\bar\lambda$ is also a root of $C_T$ with the same algebraic multiplicity. Now, I want to show that
$$\dim \ker (\lambda I - T)^{(m)} = \dim \ker (\bar \lambda I - T)^{(m)}, \qquad m = 1,\dots,r \tag{1}$$
where $r$ is the algebraic multiplicity of $\lambda$ and $\bar \lambda$. According to the spectral decomposition theorem, we have $V = \cdots \oplus V_\lambda \oplus \cdots \oplus V_{\bar \lambda} \oplus \cdots$, where $V_{\lambda} = \ker (\lambda I - T)^{(r)}$ and $V_{\bar \lambda} = \ker (\bar \lambda I - T)^{(r)}$. Let $B=(\cdots, B_{\lambda},\cdots,B_{\bar \lambda},\cdots)$ be the corresponding basis of this decomposition. Equation $(1)$ literally means that the blocks $\mathcal{M}_{B_\lambda}^{B_{\lambda}}(T|_{V_{\lambda}})$ and $\mathcal{M}_{B_{\bar \lambda}}^{B_{\bar \lambda}}(T|_{V_{\bar \lambda}})$ have complex conjugate Jordan sub-blocks of the following form
\begin{align} J_{\lambda} = \begin{bmatrix} \lambda & 1 & \cdots & 0 \\ 0 & \lambda & \ddots & \vdots \\ \vdots & \vdots & \ddots & 1 \\ 0 & 0 & \cdots & \lambda \end{bmatrix}_{d \times d}, \qquad J_{\bar \lambda}= \begin{bmatrix} \bar \lambda & 1 & \cdots & 0 \\ 0 & \bar \lambda & \ddots & \vdots \\ \vdots & \vdots & \ddots & 1 \\ 0 & 0 & \cdots & \bar \lambda \end{bmatrix}_{d \times d}, \qquad J_{\bar \lambda} = \overline{J_{\lambda}} \end{align}
or more compactly,
$$\mathcal{M}_{B_{\bar \lambda}}^{B_{\bar \lambda}}(T|_{V_{\bar \lambda}}) = \overline{\mathcal{M}_{B_\lambda}^{B_{\lambda}}(T|_{V_{\lambda}})}$$ How can I prove equation $(1)$?