Let, for $j \in \{0,\dots,k\}$, $N_j^{(0)} := \displaystyle\prod\limits_{\substack{i = 0\\ i \neq j}}^{k}(n+i)$.
By using the same type of argument as in this post, we can show that:
$$\operatorname{lcm}(n,n+1,\dots,n+k) = \frac{\displaystyle\prod_{i=0}^{k}(n+i)}{\operatorname{gcd}\left(N_0^{(0)},\dots, N_k^{(0)}\right)}$$
To have the desired result, it suffices to check that there exists an integer $r$ such that $r\operatorname{gcd(\dots)} = k!$, since we'd then get:
$$rn \binom{n+k}{k} = r\,\cdot\,\frac{\displaystyle\prod_{i=0}^{k}(n+i)}{k!} = \frac{\displaystyle\prod_{i=0}^{k}(n+i)}{\operatorname{gcd}\left(N_0^{(0)},\dots, N_k^{(0)}\right)}$$
Let $d := \operatorname{gcd}\left(N_0^{(0)},\dots, N_k^{(0)}\right)$. Suppose by contradiction that $d$ does not divide $k!$.
Let, for $p$ prime, $v_p$ denote the usual $p$-adic valuation.
$d$ not dividing $k!$ implies that there exists $p$ prime such that: $$v_p(d) \geq v_p(k!)+1 = \left(\sum_{l = 1}^{k}v_p(l)\right) + 1$$
By definition of $k!$ and due to the fact that $v_p(ab) = v_p(a) + v_p(b)$.
Because $d$ is a common divisor of all the $N_{j}^{(0)}$, $p^{v_p(d)}$ does too, and we necessarily have that, for $j \in \{0,\dots,k-1\}$:
$$\begin{split}p^{v_p(d)} \mid N_j^{(0)} - N_{j+1}^{(0)} & = \displaystyle\prod\limits_{\substack{i = 0\\ i \neq j}}^{k}(n+i) \,\,- \displaystyle\prod\limits_{\substack{i = 0\\ i \neq j+1}}^{k}(n+i)\\
& = \left(\displaystyle\prod\limits_{\substack{i = 0\\ i \not\in \{j,j+1\}}}^{k}(n+i)\right)\Big((n+j+1) - (n+j)\Big)\\
& = \left(\displaystyle\prod\limits_{\substack{i = 0\\ i \not\in \{j,j+1\}}}^{k}(n+i)\right) \cdot 1 = \displaystyle\prod\limits_{\substack{i = 0\\ i \not\in \{j,j+1\}}}^{k}(n+i) =: N_j^{(1)} \end{split}$$
Now, since $p^{v_p(d)} = p^{v_p(d) - v_p(1)}$ is a common divisor of all the $N_j^{(1)}$, we similarly get that, for $j \in \{0,\dots,k-2\}$:
$$\begin{split}p^{v_p(d) - v_p(1)} \mid N_j^{(1)} - N_{j+1}^{(1)} & = \displaystyle\prod\limits_{\substack{i = 0\\ i \not\in \{j,j+1\}}}^{k}(n+i) \,\,- \displaystyle\prod\limits_{\substack{i = 0\\ i \not\in \{j+1,j+2\}}}^{k}(n+i)\\
& = \left(\displaystyle\prod\limits_{\substack{i = 0\\ i \not\in \{j,j+1,j+2\}}}^{k}(n+i)\right)\Big((n+j+2) - (n+j)\Big)\\
& = \left(\displaystyle\prod\limits_{\substack{i = 0\\ i \not\in \{j,j+1,j+2\}}}^{k}(n+i)\right) \cdot 2 =: N_j^{(2)} \cdot 2\end{split}$$
Therefore, $p^{v_p(d) - v_p(1) - v_p(2)}$ divides all the $N_j^{(2)}$ once again.
We can then iterate the process repeatedly by defining, for $m \in \{0,\dots, k\}$ and $j \in \{0,\dots,k-m\}$, $N_j^{(m)} := \displaystyle\prod\limits_{\substack{i = 0\\ i \not\in \{j,j+1,\dots,j+m\}}}^{k}(n+i)$, and then looking at the differences $N_j^{(m)} - N_{j+1}^{(m)}$ for $j \in \{0,\dots,k-m-1\}$ and for $m \in \{0,\dots,k-1\}$.
We'll obtain that $p^{v_p(d) - \sum_{l=1}^{m} v_p(l)}$ divides $N_j^{(m+1)} \cdot (m+1)$, hence: $p^{v_p(d) - \sum_{l=1}^{m+1} v_p(l)} \mid N_j^{(m+1)}$ (and we are guaranteed to have integers at all times thanks to the starting assumption).
By induction, at the end of the step $m = k-1$, we'll have obtained that $p^{v_p(d) - \sum_{l = 1}^{k} v_p(l)}$ divides $N_0^{(k)} = \displaystyle\prod\limits_{\substack{i = 0\\ i \not\in \{0,1,\dots,k\}}}^{k}(n+i) = 1$ by convention.
But this would be absurd since that would mean that $p^{v_p(d) - \sum_{l=1}^{k} v_p(l)} = 1$ and as such that $v_p(d) - \sum_{l=1}^{k} v_p(l) = 0$ yet our assumption prevents that, thus $d$ divides $k!$, and we have finished by the previous observations.