Let \begin{equation} p \in[1, \infty) \text { şi }\left(\alpha_n\right)_{n \in \mathbb{N}} \in l^{\infty} \end{equation} . Show that the linear operator \begin{equation} F: l^p \rightarrow l^p \end{equation} given by \begin{equation} F\left(\left(x_n\right)_{n \in \mathbb{N}}\right)=\left(\alpha_n x_n\right)_{n \in \mathbb{N}} \end{equation} for all \begin{equation} \left(x_n\right)_{n \in \mathbb{N}} \in l^p \end{equation} is continuous and it's norm is \begin{equation} \|F\|=\left\|\left(\alpha_n\right)_{n \in \mathbb{N}}\right\|_{\infty} . \end{equation}
I try to find a real number l such that the norm of F times x is less or equal to l times norm of x but i don't know how to prove this.I don't know if i'm on a good path.