Inner Product Space $X$ with $x,y \in X$, ${\lVert y \rVert} = 1$, solve for $\lambda \in \mathbb{C}$ that minimizes ${\lVert x - \lambda y \rVert}$
\begin{align*} {\lVert x - \lambda y \rVert}^2 &= {\lVert x \rVert}^2 - \lambda {\langle x,y \rangle} - \overline{\lambda {\langle x,y \rangle}} + \lambda \overline{\lambda} \\ \end{align*}
I believe this is minimized when $(x - \lambda y) \perp y$ or $\langle x - \lambda y, y \rangle = 0$, which is $\lambda = {\langle y,x \rangle} = \overline{\langle x,y \rangle}$. How can I demonstrate that this value will minimize ${\lVert x - \lambda y \rVert}^2$?