I'm trying to respond to @GEdgar's comment about extending this result to more general spaces.
Let $(X, \mathcal X)$ be a measurable space and $(E, d)$ a metric space. Let $f, f_n:X \to E$ such that $\lim_n f_n = f$ pointwise.
Theorem: If $f_n$ is Borel measurable for all $n$, then so is $f$.
My questions:
Could you have a check on my below attempt?
Does this theorem hold in case $E$ is a Hausdorff topological space?
Proof: Let $O$ be open in $E$. It suffices to show that $f^{-1}(O) \in \mathcal X$. Let $$ O_m := \{x \in O \mid d(x, \partial O) > 1/(m+1)\} \quad \forall m \in \mathbb N. $$
Then $O_m \subset O$ and $O_m$ is open in $E$. We have $$ \begin{align} &f(x) \in O \\ \iff &\lim_n f_n (x) \in O \\ \iff & \exists m \in \mathbb N, \lim_n f_n (x) \in O_m\\ \iff & \exists m \in \mathbb N, \exists N \in \mathbb N, \forall n \ge N: f_n (x) \in O_m. \end{align} $$
It follows that $$ f^{-1}(O) = \bigcup_{m \in \mathbb N} \bigcup_{N \in \mathbb N} \bigcap_{n \ge N} f_n^{-1} (O_m). $$
Clearly, $f_n^{-1} (O_m) \in \mathcal X$ because $f_n$ is Borel measurable. This completes the proof.