4

Calculating $\ln(-1)$ with ...

  • My calculator: Error (maybe "undefined")
  • Advanced calculator: $\pi i$
Blue
  • 75,673
Keon N
  • 51

1 Answers1

3

answer

It's a bit more complex:

Actually, all complex solutions are $\ln\left( -1 \right) = \pi \cdot \mathrm{i} + 2 \cdot k \cdot \pi \cdot \mathrm{i} = \left( \pi + 2 \cdot k \cdot \pi \right)\cdot \mathrm{i}$ with $k \in \mathbb{Z}$ aka there are infinitely many complex solutions in complex.

"Advanced calculators" like Wolfram|Alpha know this sometimes and show this general solution.

reason

This is because of zheRelationship between exponential functions and trigonometric functions $\exp\left( x \cdot \mathrm{i} \right) = \cos\left( x \right) + \sin\left( x \right) \cdot \mathrm{i}$ (see Euler's formula) and the periodicity of the $\operatorname{cis}\left( x \right)$ function or of the $\sin\left( x \right)$ function and $\cos\left( x \right)$ function to $2 \cdot \pi$:

$$ \begin{align*} \ln\left( -1 \right) &= x \cdot \mathrm{i}\\ x \cdot \mathrm{i} &= \ln\left( -1 \right) \quad\mid\quad \exp\left( ~~ \right)\\ \exp\left( x \cdot \mathrm{i} \right) &= \exp\left(\ln\left( -1 \right)\right)\\ \operatorname{cis}\left( x \right) &= -1\\ \cos\left( x \right) + \sin\left( x \right) \cdot \mathrm{i} &= -1 \quad\mid\quad \text{Since } -1 \text{ is not imaginary, the } \sin(x) = 0 \text{.}\\ \cos\left( x \right) + 0 \cdot \mathrm{i} &= -1\\ \cos\left( x \right) + 0 &= -1\\ \cos\left( x \right) &= -1 \quad\mid\quad \arccos\left( ~~ \right)\\ \arccos\left(\cos\left( x \right)\right) &= \arccos\left( -1 \right) + 2 \cdot k \cdot \pi\\ x &= \arccos\left( -1 \right) + 2 \cdot k \cdot \pi\\ x &= \pi + 2 \cdot k \cdot \pi\\ \\ \Rightarrow \ln\left( -1 \right) &= \left( \pi + 2 \cdot k \cdot \pi \right) \cdot \mathrm{i} = \pi \cdot \mathrm{i} + 2 \cdot k \cdot \pi \cdot \mathrm{i}\\ \end{align*} $$

You can write the genral $\ln\left( z \right)$ as

$\ln\left( z \right) = \ln\left( |z| \cdot e^{\left( \arg(z) + 2 \cdot k \cdot \pi \right) \cdot \mathrm{i}} \right) = \ln\left( |z| \right) + \ln\left( e^{\left( \arg(z) + 2 \cdot k \cdot \pi \right) \cdot \mathrm{i}} \right) = \ln\left( |z| \right) + \left( \arg(z) + 2 \cdot k \cdot \pi \right) \cdot \mathrm{i}$.

but it's a bit more complex

Since the complex numbers $\mathbb{C}$ are not the only hypercomplex numbers $\mathbb{C}^{*}$ that can have an imaginary unit $\mathrm{i}$ with $\mathrm{i}^{2} = -1$, but also an infinite number of other hypercomplex numbers, e.g. the quaternions $\mathbb{H}$ (imaginary units $\mathrm{i}$, $\mathrm{j}$ and $\mathrm{k}$ with $\mathrm{i}^{2} = \mathrm{j}^{2} = \mathrm{k}^{2} = \mathrm{i} \cdot \mathrm{j} \cdot \mathrm{k} = -1$), the octonions $\mathbb{O}$, sedenions $\mathbb{S}$, ..., and you can apply Euler's formula to any hypercomplex number with an imaginary unit $\mathrm{i}_{k}$ with $\mathrm{i}_{k}^{2} = -1$, which means that there are again an infinite number of solutions.

  • 1
    Okernions? Did you mean octonions? – HackR Oct 24 '22 at 12:24
  • @HackR Oh yes... A little misstypo. I'll correkt that. – Kevin Dietrich Oct 24 '22 at 12:25
  • 1
    I voted your answer, although I don't know anything about okernions and etc. But, how do you get $ijk=-1$? Because, $$i^2=j^2=k^2=-1\implies i^2j^2k^2=-1(-1)(-1)=-1≠(-1)^2=1$$ Maybe, I guess this is another algebra? – lone student Oct 24 '22 at 12:28
  • @lonestudent This is Hamilton's definition of the imaginary units of the quaternions. The quaternions are special. Namely, they are not commutative with respect to multiplication aka $\mathrm{k}=\mathrm{i}\cdot\mathrm{j}\ne\mathrm{j}\cdot\mathrm{i}=-\mathrm{k}$. This means that you can't use the square like this: $$(a\cdot b)^{2}=a\cdot b\cdot a\cdot b\ne a\cdot a\cdot b\cdot b=a^{2}\cdot b^{2}$$ You can imagine this units as matrices. Matrices are not commutative with respect to multiplication and you can represend all this units as matrices aka this does not apply to matrices either. – Kevin Dietrich Oct 24 '22 at 12:41
  • @KevinDietrich Thank you for clarifications. I see my assumption was true. This is advanved and different topic. – lone student Oct 24 '22 at 13:20