$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\sum_{n = 1}^{\infty}{n^{5} \over \expo{2\pi n} - 1} = {\LARGE ?}}$
The
${\ds{t^{5}} \over \ds{\expo{2\pi t} - 1}}$-
$\ds{Mellin\ Transform}$ is given by:
\begin{align}
& \left.\int_{0}^{\infty}t^{z - 1}
\,{t^{5} \over \expo{2\pi t} - 1}\dd t
\right\vert_{\Re\pars{z}\ >\ -4} =
\pars{2\pi}^{-z - 5}\,\,\,
\Gamma\pars{z + 5}\zeta\pars{z + 5}
\\[5mm] & \mbox{such that}
\\ &
{t^{5} \over \expo{2\pi t} - 1} =
\left.\int_{c\ -\ \infty\ic}^{c\ +\ \infty\ic}
\pars{2\pi}^{-z - 5}\,\,\,\Gamma\pars{z + 5}\zeta\pars{z + 5}t^{-z}\,\,{\dd z \over 2\pi\ic}
\right\vert_{\,\,c\ >\ -4}
\end{align}
Hereafter, I'll choose
$\ds{c = 1^{+}}$ in order to
ensure the convergence of
$\ds{\sum_{n = 1}^{\infty}n^{-z}}$.
Then,
\begin{align}
& \sum_{n = 1}^{\infty}{n^{5} \over \expo{2\pi n} - 1} \\[5mm] = &
\int_{1^{+}\ -\ \infty\ic}^{1^{+}\ +\ \infty\ic}\
\overbrace{\pars{2\pi}^{-z - 5}\,\,\,\Gamma\pars{z + 5}\zeta\pars{z + 5}\zeta\pars{z}}
^{\ds{\on{f}\pars{z}}}\,\,{\dd z \over 2\pi\ic}
\end{align}
I'll switch the integration to the path
$\ds{\braces{z \mid z = -2 + t\ic,\ t \in \mathbb{R}}}$:
\begin{align}
& \sum_{n = 1}^{\infty}{n^{5} \over \expo{2\pi n} - 1} =
\int_{-\infty}^{\infty}\on{f}\pars{-2 + \ic t}
{\dd t \over 2\pi} +
\on{Res}\bracks{\on{f}\pars{z},z = 1}
\end{align}
The integral vanishes out: With
$\ds{Riemann\ Functional\ Equation}$ it's shown that the integrand is an
$\ds{odd}$ function of
$\ds{t}$.
Integration along
$\ds{\pars{-2 \pm \ic R,1^{+} \pm \ic R}}$ vanishes out too as
$\ds{R \to \infty}$.
Therefore,
\begin{align}
& \sum_{n = 1}^{\infty}{n^{5} \over \expo{2\pi n} - 1} =
\on{Res}\bracks{\on{f}\pars{z},z = 1} =
\pars{2\pi}^{-6}\,\,\Gamma\pars{6}\zeta\pars{6}
\\[5mm] = &
{1 \over 64\pi^{6}}\times 120 \times {\pi^{6} \over 945} = \bbx{\color{#44f}{1 \over 504}} \approx
0.001984
\end{align}