I would like to prove $\lim_{n\rightarrow\infty}(1-n^{-\alpha+o(1)})^n$. $0< \alpha<1$.
I asked my friend and he telled me that $$(1-n^{-\alpha+o(1)})^n=[(1-n^{-\alpha+o(1)})^{n^{\alpha+o(1)}})]^{n^{1-\alpha-o(1)}}$$.
Since $\lim_{n\rightarrow\infty}(1-n^{-\alpha+o(1)})^{n^{\alpha+o(1)}}=e^{-1}$, we have $$\lim_{n\rightarrow\infty}(1-n^{-\alpha+o(1)})^n= \lim_{n\rightarrow\infty}e^{-n^{1-\alpha-o(1)}}=0$$ I don't think it is rigorous. I have the following two main questions.
(1) How to show $\lim_{n\rightarrow\infty}(1-n^{-\alpha+o(1)})^{n^{\alpha+o(1)}}=e^{-1}$? I know $\lim_{n\rightarrow\infty}(1-n^{-\alpha})^{n^{\alpha}}=e^{-1}$ but I don't know how to deal with extra o(1).
(2) How can we somehow first evaluate the limit inside the exponential? By the same reasoning, I think we can have $\lim_{n\rightarrow\infty}(1-n^{-\alpha+o(1)})^n=\lim_{n\rightarrow\infty}(\lim_{n\rightarrow\infty}(1-n^{-\alpha+o(1)}))^n=\lim_{n\rightarrow\infty}1^n=1$, which results in a totally different answer.