The following is an answer to the proof of
$$ \lim \limits_{x\to 0^+}f\left( \frac{1}{x} \right)=\lim \limits_{x\to \infty}f(x)$$
If $l=\lim \limits_{x\to \infty}f(x)$, then for every $\epsilon>0$ there is some $N$ such that $|f(x)-l|<\epsilon$ for $x>N$, and we can clearly assume that $N>0$. Now if $0<x<\frac{1}{N}$, then $\frac{1}{x} > N$, so $|f\left(\frac{1}{x}\right)-l|<\epsilon$. Thus, $\lim \limits_{x\to 0^+}f\left( \frac{1}{x} \right)=l$.
I don't get how if $\frac{1}{x} > N$, we can conclude that $|f\left(\frac{1}{x}\right)-l|<\epsilon$.