I'd like to know if my proof of the following is valid and if there's a shorter proof:
Prove that for all $n\in \mathbb{N}$ we have that $6$ divides $n^3-n$
Proof: We proceed by induction...
$P(1)=(1)^3-(1)=0$ which $6$ divides
Suppose the proposition is true for $n=k$, that is, there exists $j\in \mathbb{N}$ s.t. $k^3-k=6j$.
We show that $P(k+1)=(k+1)^3-(k+1)=6i$ for some $i$: $$(k+1)^3-(k+1)=k^3+3k^2+2k$$ $$=(k^3-k)+3k^2+3k$$ $$=\color{red}{6j+3k(k+1)}$$
Now we show that $6$ divides $3k(k+1)$. Either $3k(k+1)$ is even (case 1), or odd (case 2).
(case 1) There exists $l$ s.t. $k=2l\implies3k(k+1)=6l(2l+1)$
(case 2) There exists $m$ s.t. $k=2m+1\implies3k(k+1)=3(2m+1)(2m+1+1)=6(2m^2+3m+1)$
Now, (case 1) and (case 2) $\implies 6$ divides $3k(k+1)\implies 3k(k+1)=\color{blue}{6q}$ for some $q\in\mathbb{N}$
Next, $$P(k+1)=\color{red}{6j+3k(k+1)}=6j+\color{blue}{6q}=6(i)$$ Therefore, by induction $6$ divides $n^3-n$ for all $n\in \mathbb{N}$