What's an example of a function with $\mathcal{P}(\mathcal{P}(X)) \rightarrow \mathcal{P}(X)$ and $X \rightarrow \mathcal{P}(X)?$
Absolute beginner here.
The first confusion I have is whether I have to provide two functions or one function satisfying both constraint. I will assume the first interpretation is true.
So $\mathcal{P}(\mathcal{P}(X))$ refers to all subsets of the set containing all subsets of X. For example if $X = \{0\}$, then $\mathcal{P}(\mathcal{P}(X))$ is $\{\emptyset, \{0\}, \{\emptyset\}, \{0, \emptyset\} \}$.
A function with $\mathcal{P}(\mathcal{P}(X)) \rightarrow \mathcal{P}(X)$ means that the domain is $\mathcal{P}(\mathcal{P}(X))$ and the codomain is $\mathcal{P}(X)$. An example I can think of is the $\max()$ function after I flatten out the element of a set(i.e. remove nested $\{$ and $\}$), but is it correct?