Factoring a irreducible polynomial in $\mathbb F_4\subseteq \mathbb F_{16}$.
Consider $$\mathbb F_{16}\cong \dfrac{\mathbb F_2[x]}{(x^4+x+1)}$$$$=\{a_0+a_1x+a_2x^2+a_3x^3\;|\; a_i=0\;or\;1,\quad x^4+x+1=0\}$$
Now I can find the generator of the cyclic group $$<x>=\mathbb F_{16}^*\cong \mathbb Z_{15}$$ since $x^5\neq 1, x^3\neq 1$
Then further I can find $\mathbb F_4\subseteq \mathbb F_{16}$ again using above cyclic trick that:
$$\mathbb F_{4}=\{0,1,x^5,x^{10}\}\\ =\{0,1,x^2+x,1+x+x^2\}$$
Now I want to find $Aut_{\mathbb F_{4}}(\mathbb F_{16})$ that are automorphisms, fixing $\mathbb F_{4}$
I tried to see $x^2+x=\beta$ then $\mathbb F_{4}=\{0,1,\beta,1+\beta\}$
Now I can further extend this as $$\mathbb F_{16}=\dfrac{\mathbb F_{4}[t]}{(t^2+t+1)}$$
Now to understand automorphism decribed above I need to understand the roots of the extension, which I cannot canonically see.