I still haven't found a reference in the literature, but I have the following proof.
We refer to Klenke's Probability Theory (2nd Edition, 2014) unless mentioned otherwise.
Let $(\Omega_0,\mathcal A_0,\mathbb P)$ be a measure space and $I=\mathbb Z_{>0}$.
Let $(\Omega_i,\mathcal A_i)$, $i\in I$, be Borel spaces (Definition 8.35), $\Omega=\prod_{i\in I}\Omega_i$ and $\mathcal A=\bigotimes_{i\in I}\mathcal A_i$ (cf. Section 14.3).
For $J\subseteq I$ let $\Omega_J=\prod_{i\in J}\Omega_i$ and $\mathcal A_J=\bigotimes_{i\in J}\mathcal A_i$. For $J\subseteq L\subseteq I$ let $X^L_J:\Omega_L\rightarrow\Omega_J$, $x\mapsto(x_i)_{i\in J}$, be the canonical projection. For $n\in I$ let $[n]=I\cap[1,n]$.
Consider a familiy of Markov kernels $\kappa_n:\Omega_0\times\mathcal A_{[n]}\rightarrow[0,1]$ for $n\in I$.
For $\omega\in\Omega_0$ and $n\in I$ let
$P_{\omega,n}$ be given by $P_{\omega,n}(\mathcal E)=\kappa_n(\omega,\mathcal E)$ for $\mathcal E\in\mathcal A_{[n]}$.
Then $(\kappa_n)_n$ is consistent for all $\omega\in\Omega_0$, for all $n\in I$ and all $\mathcal E\in\mathcal A_{[n]}$ we have $P_{\omega,n}(\mathcal E)=P_{\omega,n+1}(\mathcal E\times\Omega_{n+1})$.
Let $\kappa_n$ be consistent and fix $\omega\in\Omega$.
Notice that for finite $J\subseteq I$ the measure $P'_J$ on $(\Omega_J,\Sigma_J)$ given by $P'_J(\mathcal E_J)=P_{\omega,n}(\mathcal E_J\times\Omega_{[n]\setminus J})$, for any $n\ge\max J$, is well-defined, and that the family $\{P'_J:J\subseteq I,|J|<\infty\}$ is consistent (Definition 14.34). Thus, Theorem 14.35 ensures the existence of a unique measure $P_\omega$ on $(\Omega,\mathcal A)$ such that $P'_J=P_\omega\circ X^{I-1}_J$ for all $J\subseteq I$ with $|J|<\infty$ (in particular $P_{\omega,n}=P_\omega\circ X^{I-1}_{[n]}$, i.e.$P_{\omega,n}(\mathcal E)=P_\omega(\mathcal E\times\Omega_{I\setminus[n]})$), called the projective limit (Kolmogorov's Extension Theorem 14.36).
Let $\kappa:\Omega_0\times\mathcal A\rightarrow[0,1]$, $(\omega,\mathcal E)\mapsto P_\omega(\mathcal E)$ be the corresponding (unique) projective limit of $(\kappa_n)_n$.
Now, we show that the projective limit is a transition kernel.
First, we give the spaces structure. Since the $(\Omega_i,\mathcal A_i)$ are Borel spaces, we can pull the metric $\mathrm{d}_i:\Omega_i^2\rightarrow\mathbb R$ from the subset $B_i\in\mathcal B(\mathbb R)$ using the Borel isomorphism $\varphi:\Omega_i\rightarrow B_i$, thus $\mathrm{d}_i$ induces a topology $\mathcal T_i$ for which $\mathcal A_i=\mathcal B(\Omega_i)$ is the Borel algebra.
This induces the Tychonoff topology $\mathcal T$ on $\Omega$, which is induced by the canonical product metric $\mathrm d:\Omega^2\rightarrow\mathbb R$ obtain from the $\mathrm{d}_i$, and for which the product $\sigma$-algebra $\mathcal A=\mathcal B(\Omega)$ is the Borel algebra (Lemma 1.2 in Kallenberg's Probability Theory, 3rd Edition, 2021, with separability of the countable product).
First, recall that for all $\omega\in\Omega$ the projective limit $\kappa(\omega,\cdot)=(\kappa(\omega,\mathcal E))_{\mathcal E}=P_\omega$ is a probability measure, so we only have to show that $f_{\mathcal E}:\Omega_0\rightarrow[0,1]$, $\omega\mapsto\kappa(\omega,\mathcal E)$, is measurable for all $\mathcal E\in\mathcal A$.
First, assume that $\mathcal E\subseteq\Omega$ is closed.
For $n\in I$ let $\mathcal E_n=\{(x_i)_{i\in[n]}:x\in\mathcal E\}$,
$\mathcal E^*_n=\mathcal E_n\times\Omega_{I\setminus[n]}$, notice that $(\mathcal E^*_n)_n$ is non-increasing and let $\mathcal E^*=\lim_{n\rightarrow\infty}\mathcal E^*_n=\bigcap_{n=1}^\infty\mathcal E^*_n$.
By definition we have $\mathcal E\subseteq\mathcal E^*$.
On the other hand, for $x^*\in\mathcal E^*$ and all $n\in I$ there exists $x(n)\in\mathcal E$ such that $x_{[n]}(n)=x^*_{[n]}$. But the geometric series yields
$$\mathrm{d}(x(n),x^*)=\sum_{i>n}\frac{\mathrm{d}_i(x_i(n),x^*_i)}{2^i(1+\mathrm{d}_i(x_i(n),x^*_i))}\le\sum_{i>n}2^{-i}=\frac{2^{-(n+1)}}{1-2^{-1}}=2^{-n}$$
and thus $\lim_{n\rightarrow\infty}x(n)=x^*$, so $x^*\in\mathcal E$ since $\mathcal E$ is closed. This shows that $\mathcal E^*=\mathcal E$.
Using continuity of measures from above we obtain
$$f_{\mathcal E}(\omega)=\kappa(\omega,\mathcal E)=P_\omega(\mathcal E)=\inf_{n}P_{\omega}(\mathcal E^*_n)=\inf_nP_{\omega,n}(\mathcal E_n)=\inf_n\kappa_n(\omega,\mathcal E_n)=f_{n}(\omega),$$
where $f_n:\Omega\rightarrow[0,1]$, $\omega\mapsto\kappa_n(\omega,\mathcal E_n)$.
But this means that $f_n$ is measurable since $\kappa_n$ is a Markov kernel, which means that $f_{\mathcal E}$ is measurable since it is the infimum of measurable functions. This shows that $f_{\mathcal E}=1-f_{\Omega\setminus\mathcal E}$ is measurable for $\mathcal E$ open.
Now, consider the set $\mathcal D=\{\mathcal E\in\mathcal A:f_{\mathcal E}\,\mathrm{ measurable}\}$. By the above we have $\mathcal T\subseteq\mathcal D$, and $\mathcal T$ is a $\pi$-system, since it is closed with respect to pairwise intersections.
Now, we show that $\mathcal D$ is a $\lambda$-system. Clearly, we have $\Omega\in\mathcal T\subseteq\mathcal D$. Also, for any $\mathcal E,\mathcal F\in\mathcal D$ with $\mathcal E\subseteq\mathcal F$ we have $f_{\mathcal F\setminus\mathcal E}(\omega)=P_\omega(\mathcal F\setminus\mathcal E)=P_\omega(\mathcal F)-P_\omega(\mathcal E)=f_{\mathcal F}(\omega)-f_{\mathcal E}(\omega)$, i.e. $f_{\mathcal F\setminus\mathcal E}=f_{\mathcal F}-f_{\mathcal E}$, so clearly $f_{\mathcal F\setminus\mathcal E}$ is measurable and thus $\mathcal F\setminus\mathcal E\in\mathcal D$.
Similarly, for $\mathcal E_i\in\mathcal D$, $i\in\mathbb Z_{>0}$, pairwise disjoint we have $f_{\bigcup_i\mathcal E_i}=\sum_if_{\mathcal E_i}$, which is thereby measurable because sums and pointwise limits are (recall that $0\le f_{\mathcal G}\le 1$), hence we have $\bigcup_i\mathcal E_i\in\mathcal D$. This shows that $\mathcal D$ is a $\lambda$-system and we conclude that $\mathcal A=\sigma(\mathcal T)=\mathcal D$, since $\mathcal T$ generates $\mathcal A$ by definition.
This means that $f_{\mathcal E}$ is measurable for all $\mathcal E\in\mathcal A$, which completes the proof that the projective limit $\kappa$ is a Markov kernel.
Concluding Remarks: Clearly, if we want to define the $P_n$ via kernels, we are free to do so, meaning that we obtain both the Ionescu-Tulcea Theorem 14.32 and Theorem 14.35 as special cases (using that any consistent family $P'_J$ is determined by $P'_{[n]}$ as discussed above) for $\mathcal A_0$ being trivial. Another important special case is the countable product of kernels $\kappa_i:\Omega\times\mathcal A_i\rightarrow[0,1]$, i.e. the conditional product measure.