Let $f(z)$ be analytic at $z=w$ and have a pole at $z=a$.
How does one show that the residue of $\displaystyle\frac{f(z)}{w-z}$ at $z=a$ equals the singular/principal part of $f(z)$ evaluated at $z=w$?
For example, let $ \displaystyle f(z) = \frac{\cot z}{z^{2}} = \frac{1}{z^{3}} - \frac{1}{3z} + O(z)$.
Then $ \displaystyle\text{Res} \Big[ \frac{\cot z}{z^{2}(2-z)},0 \Big] = \frac{1}{2^{3}} - \frac{1}{3(2)} = - \frac{1}{24}$.
It came up in a proof of the Mittag-Leffler partial fractions expansion theorem.