Let $\mu:\mathscr P(\mathbb R)\to[0,\infty]$ satisfy:
- (Finite additivity) $A\cap B=\varnothing\implies$$\mu(A\cup B)=\mu(A)+\mu(B)$
- (Interval property) $a<b\in\mathbb R\implies\mu\big((a,b)\big)=b-a$.
These conditions fix the measures of every interval (open or closed, infinite or finite), and of many other sets (e.g., finite unions of intervals). Are the sets whose measures are fixed by these properties precisely the Borel sets, or perhaps the Lebesgue sets?
To be more precise, define $\mu^-$ and $\mu^+$ as follows:
$$\mu^-(A)=\sup \left\{\left. \sum_{k=1}^n \mu(I_k)\; \right|\; I_k\text{ are disjoint intervals and }\bigcup_kI_k\subseteq A \right\}$$
$$\mu^+(A)=\inf \left\{\left. \sum_{k=1}^n \mu(I_k)\; \right|\; I_k\text{ are intervals and }A\subseteq \bigcup_kI_k \right\}.$$
Then $\mu^-(A)\leqslant\mu(A)\leqslant\mu^+(A).$ If $\mu^-(A)=\mu^+(A)$, then $\mu(A)$ is fixed. Let $\mathscr A=\{A\subseteq \mathbb R\;|\; \mu^-(A)=\mu^+(A)\}$. Is $\mathscr A$ the Borel or Lebesgue $\sigma$-algebra over $\mathbb R$?