Let $\mathbb{T}=\{ z\in \mathbb{C}\; |\; |z|=1\}$ denote the unit circle. Define $L^2 (\mathbb{T})=\{ f:\mathbb{T}\to \mathbb{C}\; |\; f\; \text{is measurable and}\; \int_{\mathbb{T}}|f(z)|^2 dz<\infty\}$. My question is that why $(z^n)_{n\in \mathbb{Z}}$ is a basis for $L^2 (\mathbb{T})$?
$L^2 (\mathbb{T})$ is a Hilbert space with $$\langle f,g\rangle =\int_{\mathbb{T}}f(z)\overline{g(z)}dz,\quad f,g\in L^2 (\mathbb{T}).$$
I could porve that $(z^n)_{n\in \mathbb{Z}}$ is orthonormal but I don't have any idea about how to show it is a basis.