The crux of the matter is proving that
$\Sigma=[1]+[2]+[3]+[4]+[5]=-1/2,$
where for brevity $[n]$ is used for $\cos(2n\pi/11)$, or (with an eye towards later interpretation)
$[n]\overset{\text{def}}{=}\cos[1(2n\pi/11)].$
Take our expression for the sum
$\Sigma=[1]+[2]+[3]+[4]+[5]$
and multiply by $[1]$ to obtain
$[1]\Sigma=[1][1]+[1][2]+[1][3]+[1][4]+[1][5].$
Use the sum-product relation for cosines
$[m][n]=\frac12([m+n]+[m-n])$
together with the symmetry and periodicity relations
$[n]=[-n]=[11\pm n]$
to express $[1]\Sigma$ as a linear expression in the cosines:
$[1][1]=\frac12([2]+[0])=\frac12+\frac12[2]$
$[1][2]=\frac12([3]+[-1])=\frac12[1]+\frac12[3]$
et cetera, and thence
$[1]\Sigma=\frac12+\frac12[1]+[2]+[3]+[4]+[5].$
Similarly derive expressions for $[2]\Sigma, [3]\Sigma, [4]\Sigma, [5]\Sigma$. Note the nearly symmetrical nature of the results, which for completeness include the $[1]\Sigma$ product derived above:
$[1]\Sigma=\frac12+\frac12[1]+[2]+[3]+[4]+[5]$
$[2]\Sigma=\frac12+[1]+\frac12[2]+[3]+[4]+[5]$
$[3]\Sigma=\frac12+[1]+[2]+\frac12[3]+[4]+[5]$
$[4]\Sigma=\frac12+[1]+[2]+[3]+\frac12[4]+[5]$
$[5]\Sigma=\frac12+[1]+[2]+[3]+[4]+\frac12[5]$
And add everything up:
$([1]+[2]+[3]+[4]+[5])\Sigma=\frac52+\frac92([1]+[2]+[3]+[4]+[5]).$
Now the combinations $[1]+[2]+[3]+[4]+[5]$ can be replaced by $\Sigma$ and we have a quadratic equation for $\Sigma$:
$\Sigma^2-\frac92\Sigma-\frac52=0.$
Solving by standard methods gives two candidate roots $\Sigma=-\frac12$ and $\Sigma=5$. The latter is clearly impossible, or more precisely it's the sum we would get if we had chosen to render
$[n]\overset{\text{def}}{=}\cos[\color{blue}{0}(2n\pi/11)].$
instead of the intended
$[n]\overset{\text{def}}{=}\cos[\color{blue}{1}(2n\pi/11)].$
Thus the remaining root $-1/2$ must be the required sum value.