There are multiple ways to derive $\sum_{x=1}^\infty xr^x = {r\over (r-1)^2}$ mentioned here How can I evaluate $\sum_{n=0}^\infty(n+1)x^n$? but none of them show the derivation by taking the limit of the partial sum formula. I'm having trouble with this.
Starting from the version of the formula Wolfram alpha gave: $$\sum_{x=1}^n xr^x = {\frac{(nr-n-1)r^{n+1}+r}{(1-r)^2}}$$
$$\lim_{n\rightarrow \infty}{\frac{(nr-n-1)r^{n+1}+r}{(1-r)^2}}$$
$$=\frac{1}{(1-r)^2}\bigg(\lim_{n\rightarrow \infty} (nr^{n+2}) - \lim_{n\rightarrow \infty} (nr^{n+1}) -r^{n+1} + r\bigg)$$
Using L'Hopital's rule and the fact that $|r|<1$
$$\lim_{n\rightarrow \infty} (nr^{n+2}) =- \lim_{n\rightarrow \infty} (nr^{n+1}) =0$$
So we have $$=\frac{1}{(1-r)^2}\big( -r^{n+1} + r\big)$$
which does not equal $\frac {r}{(r-1)^2}$. Where is my mistake?