Let $S$ be the set of all positive integers $n$ such that $n^2$ is a multiple of both $24$ and $108$. Which of the following integers are divisors of every integer $n$ in $S$ ?
Indicate all such integers:
$A:12$
$B:24$
$C:36$
$D:72$
The answers are $A$ and $C$
First I took the lcm of $24$ and $108$ which is $2^3\times3^3$ but then it says that "the prime factorization of a square number must contain only even exponents. Thus, the least multiple of $(2^3)(3^3)$ that is a square is $(2^4)(3^4)$"
Can somebody explain why that is true?
What if the lcm was $2^3\times3^4$ ? Would I just make it $2^4\times3^4$ ?
Help!