1

My work with integration by parts, IBP:

For $n=2$, $1$ times IBP: $$\int_0^{\infty}\frac{\sin^2x}{x^2}\mathrm dx=\int_0^{\infty}\frac{\sin2x}{x}\mathrm dx=\frac{\pi}{2}.$$

For $n=3$, $2$ times IBP: $$\int_0^{\infty}\frac{\sin^3x}{x^3}\mathrm dx=\int_0^{\infty}\frac{\frac{3}{8}(3\sin3x-\sin x)}{x}\mathrm dx=\frac{3\pi}{8}.$$

For $n=4$, $3$ times IBP: $$\int_0^{\infty}\frac{\sin^4x}{x^4}\mathrm dx=\int_0^{\infty}\frac{\frac{2}{3}(2\sin4x-\sin2x)}{x}\mathrm dx=\frac{\pi}{3}.$$

Question: Can we generalize this? After $(n-1)$ times IBP, can we have $$\int_0^{\infty}\frac{\sin^nx}{x^n}\mathrm dx=\int_0^{\infty}\frac{p_n(x)}{x}\mathrm dx=K_n\pi?$$ Then, what is $p_n(x)$? What is $K_n$?

Mittens
  • 39,145
Bob Dobbs
  • 10,988

0 Answers0