I am trying to show that $$\frac{1}{n} \sum_{i = 1}^n (y_i - \overline{y})(\hat{y}_i - \overline{\hat{y}}) \geq 0$$ where $y_i$s are the observations, $\hat{y}_i$s are corresponding LS fitting values, and $\overline{y}, \overline{\hat{y}}$ are the corresponding mean.
This is how I approached it: $$\begin{align*} \frac{1}{n} \sum_{i = 1}^n (y_i - \overline{y})(\hat{y}_i - \overline{\hat{y}}) &= \frac{1}{n}\textbf{Y}_c^T \hat{\textbf{Y}_c}\\ &= \frac{1}{n}(\textbf{CY})^T (\textbf{C}\hat{\textbf{Y}})\\ &= \frac{1}{n} \textbf{Y}^T\textbf{C}^T\textbf{C}\hat{\textbf{Y}}\\ &= \frac{1}{n} \textbf{Y}^T\textbf{C}\hat{\textbf{Y}}\\ &= \frac{1}{n} \textbf{Y}^T\textbf{C}\textbf{P}_x\textbf{Y}\\ &= \frac{1}{n} \textbf{Y}^T\textbf{C} \textbf{X}(\textbf{X}^T\textbf{X})^{-1}\textbf{X}^T\textbf{Y} \end{align*}$$ where $\textbf{C}$ is the centering matrix, $\textbf{P}_x$ is the projection matrix; if $\textbf{X}$ is full column rank, $\textbf{P}_x = \textbf{X}(\textbf{X}^T\textbf{X})^{-1}\textbf{X}^T$.
I tried to show the matrix $\textbf{C} \textbf{X}(\textbf{X}^T\textbf{X})^{-1}\textbf{X}^T$ is positive semidefinite but not exactly getting there. I feel like I've missed something obvious.
Any help is appreciated. Thanks all in advance.