7

I need to know whether There exists any continuous onto map from $(0,1)\to (0,1]$

could any one give me any hint?

Myshkin
  • 35,974
  • 27
  • 154
  • 332

4 Answers4

13

Hint: $(0,1) = (0,\frac 12] \cup [\frac 12, 1)$. Can you map each part onto $(0,1]$?

martini
  • 84,101
6

Find a polynomial that:

  1. Crosses the x-axis at $x=0$ and $x=1$.
  2. Has an absolute maximum of $f(x)=1$.

$$f(x)=-4(x^2-x),x\in(0,1)$$

5

From The Hint of Martini the Map $f(x)=2x; x\in (0,{1\over 2}]$ and $f(x)=1;x\in [{1\over 2},1)$ will work

Myshkin
  • 35,974
  • 27
  • 154
  • 332
4

$f(x)=|\sin (\pi x)|$ will work

Mathronaut
  • 5,120
  • 1
    You can remove the absolute value since the function $\sin(\pi x)$ is positive on the interval $(0,1)$. – Angelo May 23 '21 at 19:47