LATEST EDIT Thanks to @FDP’s alternative method and @Claude Leibovici’s generalisation on the integral. Meanwhile, I had found a formula for the integral with power n in general. $$\boxed{I_n=∫_0^∞ \tanh(2x)\ln^n(\tanh x)dx =\frac{(-1)^n n !}{2^n}\left(1-\frac{1}{2^{n+1}}\right)\zeta(n+1)} $$ and its proof is shown below.
Recently, I investigate the integral
$$∫_0^∞ \tanh(2x)\ln (\tanh x)dx,$$ using the substitution $y=\tanh x$.
$$ \begin{aligned} I &=\int_0^{\infty} \frac{2 \tanh x}{1+\tanh ^2 x} \ln (\tanh x) d x \\ &=\int_0^{\infty} \frac{2 y \ln y}{1+y^2} \cdot \frac{d y}{2\left(1-y^2\right)} \\ &=\int_0^{\infty} \frac{y \ln y d y}{1-y^4} \\ &\stackrel{y^2\mapsto y}{=} \frac{1}{4} \int_0^{\infty} \frac{\ln y}{1-y^2} d y \end{aligned} $$
By my post, $$ \begin{aligned} &\int_0^{\infty} \frac{\ln y}{1-y^2} d y=-\frac{\pi^2}{4} \end{aligned} $$ We now conclude that $$\boxed{∫_0^∞ \tanh(2x)\ln (\tanh x)dx= -\frac{\pi^2}{16}}$$
Is there any other method to evaluate the integral? Your comments and alternative methods are highly appreciated.