I have a continuous $f:\mathbb{R}\rightarrow \mathbb{R}$ which is such that $f(x+y)=f(x)+f(y)$ $\forall x, y \in \mathbb{R}$. I am trying to prove that $f(n)=nf(1)$ for all $n \in \mathbb{Z}$.
The claim is trivial for $n \in \mathbb{N}$. Below I attempt to prove it for $n \in \mathbb{Z}_{<0}$, and all rational numbers. Is my attempt correct?
First, negative integers. Consider arbitrary negative integer, $n$. Then, $f(n)=f(n-(n-1))-f(-n+1)=f(1)-f(1-n)=f(1)-(1-n)f(1)=nf(1)$ (where the second last equality follows from the truth of the claim for all natural numbers).
Second, rational numbers. Consider arbitrary rational number $\frac{a}{b}$ (where both $a,b \in \mathbb{Z}). $ $f(\frac{a}{b})=f(\sum_{i=1}^{a}\frac{1}{b})=af(\frac{1}{b})$. I now show that $f(\frac{1}{b})=\frac{1}{b}f(1)$.
$f(\frac{1}{b})=f(\frac{1}{b}+\frac{b-1}{b})-f(\frac{b-1}{b})=f(1)-(b-1)f(\frac{1}{b})$. So, we have that $f(\frac{1}{b})=f(1)-(b-1)f(\frac{1}{b}).$ Rearranging, we get that $bf(\frac{1}{b})=f(1)$, and so $f(\frac{1}{b})=\frac{1}{b}f(1). $