Claim:$\;$If $a,b,c$ are distinct integers, there exist infinitely positive integers $n$ such that $a+n,b+n,c+n$ are pairwise coprime.
Proof:
Without loss of generality, we can assume $a < b < c$, and by an appropriate shift of $a,b,c$, we can assume $a=0$.
Letting $g=\gcd(c-1,c-b)$, write $c-1=gx$ and $c-b=gy$, where $x,y$ are positive integers with $\gcd(x,y)=1$.
Let $m=Q^ky-x$ and let $n=gm$, where $k$ is an arbitrary positive integer, and $Q$ is the product of all positive integers which are both less than or equal to $c$ and relatively prime to $c-1$.
Since there are infinitely choices for $k$, to prove the claim, it will suffice to show that $n,b+n,c+n$ are pairwise coprime (recall that $a=0$).
First suppose $p$ be a prime factor of $n$.
If $p{\,\mid\,}c$, then.
\begin{align*}
&
p\le c\;\,\text{and}\;\,p{\,\not\mid\,}(c-1)
\\[4pt]
\implies\;&
p{\,\mid\,}Q\;\,\text{and}\;\,p{\,\not\mid\,}gx
\\[4pt]
\implies\;&
p{\,\not\mid\,}g\;\,\text{and}\;\,p{\,\not\mid\,}x
\\[4pt]
\implies\;&
p{\,\mid\,}m
&&\bigl(\text{since $n=gm$}\bigr)
\\[4pt]
\implies\;&
p{\,\mid\,}(Q^ky-x)
\\[4pt]
\implies\;&
p{\,\mid\,}x
&&\bigl(\text{since $p{\,\mid\,}Q$}\bigr)
\\[4pt]
\end{align*}
contradiction.
Hence $p{\,\not\mid\,}c$, and therefore $p{\,\not\mid\,}(c+n)$.
It follows that $n$ and $c+n$ are coprime.
If $p{\,\mid\,}b$, then
\begin{align*}
&
p{\,\not\mid\,}(c-b)
&&\bigl(\text{since $p{\,\not\mid\,}c$}\bigr)
\\[4pt]
\implies\;&
p{\,\not\mid\,}gy
\\[4pt]
\implies\;&
p{\,\not\mid\,}g\;\,\text{and}\;\,p{\,\not\mid\,}y
\\[4pt]
\implies\;&
p{\,\mid\,}m
&&\bigl(\text{since $n=gm$}\bigr)
\\[4pt]
\implies\;&
p{\,\mid\,}(Q^ky-x)
\\[4pt]
\end{align*}
From $p{\,\mid\,}b$, we get $p < c$, hence $p{\,\mid\,}Q$ or $p{\,\mid\,}(c-1)$, but not both.
But if $p{\,\mid\,}Q$, then
\begin{align*}
&
p{\,\mid\,}x
&&\bigl(\text{since $p{\,\mid\,}(Q^ky-x)$}\bigr)
\\[4pt]
\implies\;&
p{\,\mid\,}gx
\\[4pt]
\implies\;&
p{\,\mid\,}(c-1)
\\[4pt]
\end{align*}
contradiction.
And if $p{\,\mid\,}(c-1)$, then
\begin{align*}
&
p{\,\mid\,}gx
\\[4pt]
\implies\;&
p{\,\mid\,}x
&&\bigl(\text{since $p{\,\not\mid\,}g$}\bigr)
\\[4pt]
\implies\;&
p{\,\mid\,}Q^ky
&&\bigl(\text{since $p{\,\mid\,}(Q^ky-x)$}\bigr)
\\[4pt]
\implies\;&
p{\,\mid\,}Q
&&\bigl(\text{since $p{\,\not\mid\,}y$}\bigr)
\\[4pt]
\end{align*}
contradiction.
In both cases, we have a contradiction, hence $p{\,\not\mid\,}b$, and therefore $p{\,\not\mid\,}(b+n)$.
It follows that $n$ and $b+n$ are coprime.
Next suppose $\gcd(b+n,c+n) > 1$.
Let $p$ be a common prime factor of $b+n$ and $c+n$.
\begin{align*}
\text{Then}\;\;&
p{\,\mid\,}(c+n)
\\[4pt]
\implies\;&
p{\,\mid\,}(c+gm)
\\[4pt]
\implies\;&
p{\,\mid\,}\bigl(c+g(Q^ky-x)\bigr)
\\[4pt]
\implies\;&
p{\,\mid\,}\bigl((c-gx)+Q^kgy\bigr)
\\[4pt]
\implies\;&
p{\,\mid\,}\Bigl(\bigl(c-(c-1)\bigr)+Q^kgy\bigr)
\\[4pt]
\implies\;&
p{\,\mid\,}(1+Q^kgy)
\\[4pt]
\implies\;&
p{\,\not\mid\,}gy
\\[4pt]
\implies\;&
p{\,\not\mid\,}(c-b)
\\[4pt]
\end{align*}
contradiction, since any common factor of $b+n$ and $c+n$ must divide $c-b$.
Hence $\gcd(b+n,c+n)=1$.
Thus we've shown that $n,b+n,c+n$ are pairwise coprime, which completes the proof of the claim.