Riesz-Representation Theorem for $L^p$ spaces says the following
Let $p \in [1,\infty]$, let $(X,\mu)$ be a measure space, let $T \in (L^{p}(X,\mu) )$ meaning that
$T \; : \; L^p(X,\mu) \to \mathbb{R}$
$T(a u + b v) = aT(u) + bT(v) \;\; \forall a,b \in \mathbb{R} \;,\, \forall u,v \in L^p(X,\mu)$
$|T(u)| \leq C||u||_{L^p(X,\mu)} \; \forall u \in L^p(X,\mu)$
Then if $p \in (1,\infty)$, or if $p = 1$ and $(X,\mu)$ is $\sigma$-finite then there exists a $g \in L^q(X,\mu)$ where $q \geq 1$ is s.t. $1/q + 1/p = 1$ such that
$T(u) = \int_X{ g \cdot u d\mu} \;\;\; \forall u \in L^p(X)$
if $p= \infty$ then $g$ may not exists, an example is $X = [-1,1]$, $\mu = \text{Lebesgue - measure}$, $T = \delta \;\;$ ($T(u) = u(0)$)
My question regards the case where $p = \infty$, in particolare what I'm asking is if the following statement is true
Statement :
Let $(X,\mu)$ be a $\sigma$-finite measure space
Let $T \; : \; L^\infty(X,\mu) \to \mathbb{R}$ be a continuos functional
Let $h \in L^1(X,\mu)$ be such that $h \geq 0$ and
$|T(u)| \leq \int_X{h |u| d\mu } \;\; \forall u \in L^\infty(X,\mu)$
Does there exist a function $g \in L^1(X,\mu)$ such that
$T(u) = \int_X{g u d\mu} \;\; \forall u \in L^\infty(X,\mu)$
How can I prove or disprove the statement? If the statement isn't true, is it true in the case where $X = \mathbb{R}^N$ and $\mu$ is the Lebesgue measure?