In class, our professor was very adamant that the following simplification is intuitive: \begin{align*} \sum^{\infty}_{n=0}x^n\binom{2n}{n}=\frac{1}{\sqrt{1-4x}} \end{align*}
I can get from the RHS to the LHS comfortably by using the identity that \begin{align*} \binom{-1/2}{n} &=(-1)^n 2^{-2n}\binom{2n}{n}. \end{align*}
However, I have no idea how to get from the LHS to the RHS without using any special identities (including the one above) or Cauchy's integral formula (I haven't learned about it yet, but someone suggested that this was a valid approach as well). Our professor insisted that we should be able to get the RHS result solely from massaging Taylor's theorem. I really want to make sure I can get these results on my own so I can try exploring other generating functions on my own, but it definitely doesn't feel intuitive in the slightest.