Consider $X=[0,1]^2\subset \mathbb{R}^2$. If $H_X$ is a set of all compact sets in $X$, then we can define a metric $d$ on $H_X$ i.e. Hausdorff metric $d$ :
For $A,\ B\in H_X$, then $d(A,B)=R$ iff there exists a smallest $R$ s.t. $R<r$, $r$ is arbitrarily close to $R$ and $U_r(A)$ contains $B$ and $U_r(B)$ contains $A$, where $U_r(C)=\{ a\in X$|$ |a-c|\leq r$ for some $c\in C\}$ and $|\ -\ |$ is Euclidean distance.
If $A_n =\{ (x,y)\in X| y=\frac{i}{n},\ 0\leq i\leq n\}$, then $A_n$ goes to $X$. Hence if $Area$ is Euclidean Lebesgue measure, $$ \lim_n\ {\rm Area}\ (A_n)=0 < {\rm Area}\ X=1 \ (1)$$
Question : I want to know whether or not there is an example opposite to $\ast$. Is there an example $A_n$ with $A_n\rightarrow A$ s.t. ${\rm Area}\ A <\lim_n\ {\rm Area} \ A_n\ (2)$ ?
Remark : a. If we consider a length function on a set of continuous maps from unit interval to $X$, then we have $(2)$ but not $(1)$.
b. Note that area function is continuous on a set of all convex subsets in $X$.