Compute the limit:
$$\lim_{n \to \infty} n^2\sqrt{1-\cos(1/n)+\sqrt{1-\cos(1/n)+\sqrt{1-\cos(1/n)+\ldots}}}$$
Compute the limit:
$$\lim_{n \to \infty} n^2\sqrt{1-\cos(1/n)+\sqrt{1-\cos(1/n)+\sqrt{1-\cos(1/n)+\ldots}}}$$
Hints:
Define $$ a_m=\underbrace{\small\sqrt{1-\cos(1/n)+\sqrt{1-\cos(1/n)+\sqrt{1-\cos(1/n)+\ldots+\sqrt{1-\cos(1/n)}}}}}_{m\text{ square roots}} $$ $a_1=\sqrt{1-\cos(1/n)}=\sqrt{2\sin^2\left(\frac1{2n}\right)}\lt2$. If $a_m\le2$, then $$ \begin{align} a_{m+1} &=\sqrt{1-\cos(1/n)+a_m}\\ &\le\sqrt{2+2}\\[4pt] &=2 \end{align} $$ Furthermore, note that $a_{m+1}\ge a_m$. Thus, $a_m$ is an increasing sequence, bounded above; therefore, $$ A_n=\lim_{m\to\infty}a_m $$ exists, is non-negative, and is no greater than $2$. We then have $$ A_n^2=2\sin^2\left(\frac1{2n}\right)+A_n $$ Solving for $A_n$ yields $$ A_n=\frac{1+\sqrt{1+8\sin^2\left(\frac1{2n}\right)}}{2} $$ $A_n\ge1$ for all $n$, therefore, $$ \lim_{n\to\infty}n^2A_n=\infty $$