The limit at 0 may be correctly calculated this way: $$ \lim\limits_{x \to 0} \frac{x^2}{1-\cos(x)} = \lim\limits_{x \to 0} \frac{x^2}{1-\cos(x)}\cdot\frac{1+\cos(x)}{1+\cos(x)}=\lim\limits_{x \to 0} \frac{x^2(1+\cos(x))}{\sin^2(x)}=\\\lim\limits_{x \to 0} \left(\frac{x^2}{\sin^2(x)}\cdot(1+\cos(x)\right)=\lim\limits_{x \to 0} \frac{x^2}{\sin^2(x)}\cdot\lim\limits_{x \to 0}(1+\cos(x)=1\cdot2=2 $$
Where is the flaw in the following? $$\lim\limits_{x \to 0} \frac{x^2}{1-\cos(x)} = \lim\limits_{x \to 0} \frac{x}{1-\cos(x)}\cdot\lim\limits_{x \to 0}\,x$$
Thank you.